On the complexity of general matrix scaling and entropy minimization via the RAS algorithm View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2008-04

AUTHORS

B. Kalantari, I. Lari, F. Ricca, B. Simeone

ABSTRACT

Given an n × m nonnegative matrix A = (aij) and positive integral vectors and having a common one-norm h, the (r,c)-scaling problem is to obtain positive diagonal matrices X and Y, if they exist, such that XAY has row and column sums equal to r and c, respectively. The entropy minimization problem corresponding to A is to find an n × m matrix z = (zij) having the same zero pattern as A, the sum of whose entries is a given number h, its row and column sums are within given integral vectors of lower and upper bounds, and such that the entropy function consisting of the sum of the terms zijln (zij/aij) is minimized. When the lower and upper bounds coincide, matrix scaling and entropy minimization are closely related. In this paper we present several complexity bounds for the -approximate (r,c)-scaling problem, polynomial in n,m,h, , and ln , where V and v are the largest and the smallest positive entries of A, respectively. These bounds, although not polynomial in , not only provide alternative complexities for the polynomial time algorithms, but could result in better overall complexities. In particular, our theoretical analysis supports the practicality of the well-known RAS algorithm. In our analysis we obtain bounds on the norm of scaling vectors which will be used in deriving not only some of the above complexities, but also a complexity for square nonnegative matrices having positive permanent. In particular, our results extend, nontrivially, many bounds for the doubly stochastic scaling of square nonnegative matrices previously given by Kalantari and Khachiyan to the case of general (r,c)-scaling. Finally, we study a more general entropy minimization problem where row and column sums are constrained to lie in prescribed intervals, and the sum of all entries is also prescribed. Balinski and Demange described an RAS type algorithm for its continuous version, but did not analyze its complexity. We show that this algorithm produces an -approximate solution within complexity polynomial in n, m, h, and . More... »

PAGES

371-401

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10107-006-0021-4

DOI

http://dx.doi.org/10.1007/s10107-006-0021-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1012056468


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Rutgers University", 
          "id": "https://www.grid.ac/institutes/grid.430387.b", 
          "name": [
            "Department of Computer Science, Rutgers University, New Brunswick, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kalantari", 
        "givenName": "B.", 
        "id": "sg:person.015033611457.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015033611457.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sapienza University of Rome", 
          "id": "https://www.grid.ac/institutes/grid.7841.a", 
          "name": [
            "Dipartimento di Statistica, Probabilit\u00e0 e Statistiche Applicate, Universit\u00e0 \u201cLa Sapienza\u201d, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lari", 
        "givenName": "I.", 
        "id": "sg:person.014622102543.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014622102543.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sapienza University of Rome", 
          "id": "https://www.grid.ac/institutes/grid.7841.a", 
          "name": [
            "Dipartimento di Statistica, Probabilit\u00e0 e Statistiche Applicate, Universit\u00e0 \u201cLa Sapienza\u201d, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ricca", 
        "givenName": "F.", 
        "id": "sg:person.016420256135.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016420256135.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sapienza University of Rome", 
          "id": "https://www.grid.ac/institutes/grid.7841.a", 
          "name": [
            "Dipartimento di Statistica, Probabilit\u00e0 e Statistiche Applicate, Universit\u00e0 \u201cLa Sapienza\u201d, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Simeone", 
        "givenName": "B.", 
        "id": "sg:person.012600006066.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012600006066.78"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1214/aoms/1177703591", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002960388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01589103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003890771", 
          "https://doi.org/10.1007/bf01589103"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02170999", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004513530", 
          "https://doi.org/10.1007/bf02170999"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02170999", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004513530", 
          "https://doi.org/10.1007/bf02170999"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9947-1957-0087058-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008395455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9939-1967-0215873-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010434195"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-247x(66)90184-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010604674"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02252097", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012192055", 
          "https://doi.org/10.1007/bf02252097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02252097", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012192055", 
          "https://doi.org/10.1007/bf02252097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0024-3795(99)00212-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018505839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0024-3795(99)00212-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018505839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s004930070007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023785675", 
          "https://doi.org/10.1007/s004930070007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0024-3795(94)00162-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026197271"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4613-3554-2_12", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029196670", 
          "https://doi.org/10.1007/978-1-4613-3554-2_12"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0024-3795(89)90490-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032055716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0041-5553(67)90069-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032277667"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0024-3795(89)90492-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033027434"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0024-3795(94)00188-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034193586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0024-3795(89)90491-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035689075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02579150", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035950209", 
          "https://doi.org/10.1007/bf02579150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02579150", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035950209", 
          "https://doi.org/10.1007/bf02579150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0024-3795(97)80036-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042148198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0024-3795(97)80036-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042148198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-6377(93)90087-w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043215269"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-6377(93)90087-w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043215269"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0024-3795(89)90493-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048885591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0024-3795(03)00664-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050412898"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0024-3795(03)00664-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050412898"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0802034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062854185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0803043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062854228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s0097539794263695", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062879912"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s0895479895289765", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062882182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/moor.14.4.700", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064723413"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/opre.38.3.439", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064730116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1992971", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069688766"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4153/cjm-1968-016-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072264986"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/9789812798190_0005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1088704600"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/conm/114/1097877", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1089206825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1.9781611970791", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098556249"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-04", 
    "datePublishedReg": "2008-04-01", 
    "description": "Given an n \u00d7 m nonnegative matrix A = (aij) and positive integral vectors and having a common one-norm h, the (r,c)-scaling problem is to obtain positive diagonal matrices X and Y, if they exist, such that XAY has row and column sums equal to r and c, respectively. The entropy minimization problem corresponding to A is to find an n \u00d7 m matrix z = (zij) having the same zero pattern as A, the sum of whose entries is a given number h, its row and column sums are within given integral vectors of lower and upper bounds, and such that the entropy function consisting of the sum of the terms zijln (zij/aij) is minimized. When the lower and upper bounds coincide, matrix scaling and entropy minimization are closely related. In this paper we present several complexity bounds for the -approximate (r,c)-scaling problem, polynomial in n,m,h, , and ln , where V and v are the largest and the smallest positive entries of A, respectively. These bounds, although not polynomial in , not only provide alternative complexities for the polynomial time algorithms, but could result in better overall complexities. In particular, our theoretical analysis supports the practicality of the well-known RAS algorithm. In our analysis we obtain bounds on the norm of scaling vectors which will be used in deriving not only some of the above complexities, but also a complexity for square nonnegative matrices having positive permanent. In particular, our results extend, nontrivially, many bounds for the doubly stochastic scaling of square nonnegative matrices previously given by Kalantari and Khachiyan to the case of general (r,c)-scaling. Finally, we study a more general entropy minimization problem where row and column sums are constrained to lie in prescribed intervals, and the sum of all entries is also prescribed. Balinski and Demange described an RAS type algorithm for its continuous version, but did not analyze its complexity. We show that this algorithm produces an -approximate solution within complexity polynomial in n, m, h, and .", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10107-006-0021-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1047630", 
        "issn": [
          "0025-5610", 
          "1436-4646"
        ], 
        "name": "Mathematical Programming", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "112"
      }
    ], 
    "name": "On the complexity of general matrix scaling and entropy minimization via the RAS algorithm", 
    "pagination": "371-401", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3971650a49df8eb41463adf949f2916c72a33f0021fd808d3f5106cfdde8b89b"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10107-006-0021-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1012056468"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10107-006-0021-4", 
      "https://app.dimensions.ai/details/publication/pub.1012056468"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:33", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000373_0000000373/records_13104_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10107-006-0021-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10107-006-0021-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10107-006-0021-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10107-006-0021-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10107-006-0021-4'


 

This table displays all metadata directly associated to this object as RDF triples.

187 TRIPLES      21 PREDICATES      59 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10107-006-0021-4 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N175749eb6f734de9b2798f2f0931dcb1
4 schema:citation sg:pub.10.1007/978-1-4613-3554-2_12
5 sg:pub.10.1007/bf01589103
6 sg:pub.10.1007/bf02170999
7 sg:pub.10.1007/bf02252097
8 sg:pub.10.1007/bf02579150
9 sg:pub.10.1007/s004930070007
10 https://doi.org/10.1016/0022-247x(66)90184-3
11 https://doi.org/10.1016/0024-3795(89)90490-4
12 https://doi.org/10.1016/0024-3795(89)90491-6
13 https://doi.org/10.1016/0024-3795(89)90492-8
14 https://doi.org/10.1016/0024-3795(89)90493-x
15 https://doi.org/10.1016/0024-3795(94)00162-6
16 https://doi.org/10.1016/0024-3795(94)00188-x
17 https://doi.org/10.1016/0041-5553(67)90069-9
18 https://doi.org/10.1016/0167-6377(93)90087-w
19 https://doi.org/10.1016/s0024-3795(03)00664-5
20 https://doi.org/10.1016/s0024-3795(97)80036-5
21 https://doi.org/10.1016/s0024-3795(99)00212-8
22 https://doi.org/10.1090/conm/114/1097877
23 https://doi.org/10.1090/s0002-9939-1967-0215873-6
24 https://doi.org/10.1090/s0002-9947-1957-0087058-6
25 https://doi.org/10.1137/0802034
26 https://doi.org/10.1137/0803043
27 https://doi.org/10.1137/1.9781611970791
28 https://doi.org/10.1137/s0097539794263695
29 https://doi.org/10.1137/s0895479895289765
30 https://doi.org/10.1142/9789812798190_0005
31 https://doi.org/10.1214/aoms/1177703591
32 https://doi.org/10.1287/moor.14.4.700
33 https://doi.org/10.1287/opre.38.3.439
34 https://doi.org/10.2307/1992971
35 https://doi.org/10.4153/cjm-1968-016-9
36 schema:datePublished 2008-04
37 schema:datePublishedReg 2008-04-01
38 schema:description Given an n × m nonnegative matrix A = (aij) and positive integral vectors and having a common one-norm h, the (r,c)-scaling problem is to obtain positive diagonal matrices X and Y, if they exist, such that XAY has row and column sums equal to r and c, respectively. The entropy minimization problem corresponding to A is to find an n × m matrix z = (zij) having the same zero pattern as A, the sum of whose entries is a given number h, its row and column sums are within given integral vectors of lower and upper bounds, and such that the entropy function consisting of the sum of the terms zijln (zij/aij) is minimized. When the lower and upper bounds coincide, matrix scaling and entropy minimization are closely related. In this paper we present several complexity bounds for the -approximate (r,c)-scaling problem, polynomial in n,m,h, , and ln , where V and v are the largest and the smallest positive entries of A, respectively. These bounds, although not polynomial in , not only provide alternative complexities for the polynomial time algorithms, but could result in better overall complexities. In particular, our theoretical analysis supports the practicality of the well-known RAS algorithm. In our analysis we obtain bounds on the norm of scaling vectors which will be used in deriving not only some of the above complexities, but also a complexity for square nonnegative matrices having positive permanent. In particular, our results extend, nontrivially, many bounds for the doubly stochastic scaling of square nonnegative matrices previously given by Kalantari and Khachiyan to the case of general (r,c)-scaling. Finally, we study a more general entropy minimization problem where row and column sums are constrained to lie in prescribed intervals, and the sum of all entries is also prescribed. Balinski and Demange described an RAS type algorithm for its continuous version, but did not analyze its complexity. We show that this algorithm produces an -approximate solution within complexity polynomial in n, m, h, and .
39 schema:genre research_article
40 schema:inLanguage en
41 schema:isAccessibleForFree false
42 schema:isPartOf N3a96a85adcfb42d29ceafc187b909cc0
43 Nee03293173a143359a1ef2b044150fe3
44 sg:journal.1047630
45 schema:name On the complexity of general matrix scaling and entropy minimization via the RAS algorithm
46 schema:pagination 371-401
47 schema:productId N08de533d16b54ee9b242db9b8c2af35f
48 N8fcede1e467e4845946dde5d389c7269
49 Nc58544e0191c4075a6e5558c6b34c65d
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012056468
51 https://doi.org/10.1007/s10107-006-0021-4
52 schema:sdDatePublished 2019-04-11T14:33
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher Ncfc0d9f6302641f396ee62aaa531cb0b
55 schema:url http://link.springer.com/10.1007%2Fs10107-006-0021-4
56 sgo:license sg:explorer/license/
57 sgo:sdDataset articles
58 rdf:type schema:ScholarlyArticle
59 N08de533d16b54ee9b242db9b8c2af35f schema:name readcube_id
60 schema:value 3971650a49df8eb41463adf949f2916c72a33f0021fd808d3f5106cfdde8b89b
61 rdf:type schema:PropertyValue
62 N175749eb6f734de9b2798f2f0931dcb1 rdf:first sg:person.015033611457.11
63 rdf:rest N2306a6d4d58f45b7b8a31b24b45a1251
64 N2306a6d4d58f45b7b8a31b24b45a1251 rdf:first sg:person.014622102543.45
65 rdf:rest Nec551c55a9a64fb28e92804dbfa92b96
66 N3a96a85adcfb42d29ceafc187b909cc0 schema:volumeNumber 112
67 rdf:type schema:PublicationVolume
68 N8fcede1e467e4845946dde5d389c7269 schema:name dimensions_id
69 schema:value pub.1012056468
70 rdf:type schema:PropertyValue
71 Nc58544e0191c4075a6e5558c6b34c65d schema:name doi
72 schema:value 10.1007/s10107-006-0021-4
73 rdf:type schema:PropertyValue
74 Ncfc0d9f6302641f396ee62aaa531cb0b schema:name Springer Nature - SN SciGraph project
75 rdf:type schema:Organization
76 Nd000f2afaed348b3ac17903d0747b9c1 rdf:first sg:person.012600006066.78
77 rdf:rest rdf:nil
78 Nec551c55a9a64fb28e92804dbfa92b96 rdf:first sg:person.016420256135.86
79 rdf:rest Nd000f2afaed348b3ac17903d0747b9c1
80 Nee03293173a143359a1ef2b044150fe3 schema:issueNumber 2
81 rdf:type schema:PublicationIssue
82 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
83 schema:name Mathematical Sciences
84 rdf:type schema:DefinedTerm
85 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
86 schema:name Pure Mathematics
87 rdf:type schema:DefinedTerm
88 sg:journal.1047630 schema:issn 0025-5610
89 1436-4646
90 schema:name Mathematical Programming
91 rdf:type schema:Periodical
92 sg:person.012600006066.78 schema:affiliation https://www.grid.ac/institutes/grid.7841.a
93 schema:familyName Simeone
94 schema:givenName B.
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012600006066.78
96 rdf:type schema:Person
97 sg:person.014622102543.45 schema:affiliation https://www.grid.ac/institutes/grid.7841.a
98 schema:familyName Lari
99 schema:givenName I.
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014622102543.45
101 rdf:type schema:Person
102 sg:person.015033611457.11 schema:affiliation https://www.grid.ac/institutes/grid.430387.b
103 schema:familyName Kalantari
104 schema:givenName B.
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015033611457.11
106 rdf:type schema:Person
107 sg:person.016420256135.86 schema:affiliation https://www.grid.ac/institutes/grid.7841.a
108 schema:familyName Ricca
109 schema:givenName F.
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016420256135.86
111 rdf:type schema:Person
112 sg:pub.10.1007/978-1-4613-3554-2_12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029196670
113 https://doi.org/10.1007/978-1-4613-3554-2_12
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/bf01589103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003890771
116 https://doi.org/10.1007/bf01589103
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/bf02170999 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004513530
119 https://doi.org/10.1007/bf02170999
120 rdf:type schema:CreativeWork
121 sg:pub.10.1007/bf02252097 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012192055
122 https://doi.org/10.1007/bf02252097
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/bf02579150 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035950209
125 https://doi.org/10.1007/bf02579150
126 rdf:type schema:CreativeWork
127 sg:pub.10.1007/s004930070007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023785675
128 https://doi.org/10.1007/s004930070007
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/0022-247x(66)90184-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010604674
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/0024-3795(89)90490-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032055716
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/0024-3795(89)90491-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035689075
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/0024-3795(89)90492-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033027434
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/0024-3795(89)90493-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1048885591
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/0024-3795(94)00162-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026197271
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/0024-3795(94)00188-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1034193586
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/0041-5553(67)90069-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032277667
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/0167-6377(93)90087-w schema:sameAs https://app.dimensions.ai/details/publication/pub.1043215269
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/s0024-3795(03)00664-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050412898
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/s0024-3795(97)80036-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042148198
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/s0024-3795(99)00212-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018505839
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1090/conm/114/1097877 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089206825
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1090/s0002-9939-1967-0215873-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010434195
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1090/s0002-9947-1957-0087058-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008395455
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1137/0802034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062854185
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1137/0803043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062854228
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1137/1.9781611970791 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098556249
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1137/s0097539794263695 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062879912
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1137/s0895479895289765 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062882182
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1142/9789812798190_0005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088704600
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1214/aoms/1177703591 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002960388
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1287/moor.14.4.700 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064723413
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1287/opre.38.3.439 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064730116
177 rdf:type schema:CreativeWork
178 https://doi.org/10.2307/1992971 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069688766
179 rdf:type schema:CreativeWork
180 https://doi.org/10.4153/cjm-1968-016-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072264986
181 rdf:type schema:CreativeWork
182 https://www.grid.ac/institutes/grid.430387.b schema:alternateName Rutgers University
183 schema:name Department of Computer Science, Rutgers University, New Brunswick, NJ, USA
184 rdf:type schema:Organization
185 https://www.grid.ac/institutes/grid.7841.a schema:alternateName Sapienza University of Rome
186 schema:name Dipartimento di Statistica, Probabilità e Statistiche Applicate, Università “La Sapienza”, Rome, Italy
187 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...