On trust region methods for unconstrained minimization without derivatives View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2003-08

AUTHORS

M.J.D. Powell

ABSTRACT

We consider some algorithms for unconstrained minimization without derivatives that form linear or quadratic models by interpolation to values of the objective function. Then a new vector of variables is calculated by minimizing the current model within a trust region. Techniques are described for adjusting the trust region radius, and for choosing positions of the interpolation points that maintain not only nonsingularity of the interpolation equations but also the adequacy of the model. Particular attention is given to quadratic models with diagonal second derivative matrices, because numerical experiments show that they are often more efficient than full quadratic models for general objective functions. Finally, some recent research on the updating of full quadratic models is described briefly, using fewer interpolation equations than before. The resultant freedom is taken up by minimizing the Frobenius norm of the change to the second derivative matrix of the model. A preliminary version of this method provides some very promising numerical results. More... »

PAGES

605-623

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10107-003-0430-6

DOI

http://dx.doi.org/10.1007/s10107-003-0430-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1052549612


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Cambridge", 
          "id": "https://www.grid.ac/institutes/grid.5335.0", 
          "name": [
            "Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, CB3 OWA, Cambridge, England"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Powell", 
        "givenName": "M.J.D.", 
        "id": "sg:person.07731545105.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07731545105.07"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1093/comjnl/6.2.163", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018099115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s101070100290", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026120726", 
          "https://doi.org/10.1007/s101070100290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10556780108805839", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030240591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0025-5718-1978-0483452-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048465494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02614326", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052304289", 
          "https://doi.org/10.1007/bf02614326"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02614326", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052304289", 
          "https://doi.org/10.1007/bf02614326"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/imamat/12.3.339", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059684357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0904038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062855628"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2003-08", 
    "datePublishedReg": "2003-08-01", 
    "description": "We consider some algorithms for unconstrained minimization without derivatives that form linear or quadratic models by interpolation to values of the objective function. Then a new vector of variables is calculated by minimizing the current model within a trust region. Techniques are described for adjusting the trust region radius, and for choosing positions of the interpolation points that maintain not only nonsingularity of the interpolation equations but also the adequacy of the model. Particular attention is given to quadratic models with diagonal second derivative matrices, because numerical experiments show that they are often more efficient than full quadratic models for general objective functions. Finally, some recent research on the updating of full quadratic models is described briefly, using fewer interpolation equations than before. The resultant freedom is taken up by minimizing the Frobenius norm of the change to the second derivative matrix of the model. A preliminary version of this method provides some very promising numerical results.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10107-003-0430-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1047630", 
        "issn": [
          "0025-5610", 
          "1436-4646"
        ], 
        "name": "Mathematical Programming", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "97"
      }
    ], 
    "name": "On trust region methods for unconstrained minimization without derivatives", 
    "pagination": "605-623", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "fa4fa8fc76fc1b10a5fbfb76eb328e976d5d212c029e9c45011b2a933395815d"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10107-003-0430-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1052549612"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10107-003-0430-6", 
      "https://app.dimensions.ai/details/publication/pub.1052549612"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T17:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000535.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10107-003-0430-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10107-003-0430-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10107-003-0430-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10107-003-0430-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10107-003-0430-6'


 

This table displays all metadata directly associated to this object as RDF triples.

84 TRIPLES      21 PREDICATES      34 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10107-003-0430-6 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author N849871db1180424fa08b999b7acc8a1b
4 schema:citation sg:pub.10.1007/bf02614326
5 sg:pub.10.1007/s101070100290
6 https://doi.org/10.1080/10556780108805839
7 https://doi.org/10.1090/s0025-5718-1978-0483452-7
8 https://doi.org/10.1093/comjnl/6.2.163
9 https://doi.org/10.1093/imamat/12.3.339
10 https://doi.org/10.1137/0904038
11 schema:datePublished 2003-08
12 schema:datePublishedReg 2003-08-01
13 schema:description We consider some algorithms for unconstrained minimization without derivatives that form linear or quadratic models by interpolation to values of the objective function. Then a new vector of variables is calculated by minimizing the current model within a trust region. Techniques are described for adjusting the trust region radius, and for choosing positions of the interpolation points that maintain not only nonsingularity of the interpolation equations but also the adequacy of the model. Particular attention is given to quadratic models with diagonal second derivative matrices, because numerical experiments show that they are often more efficient than full quadratic models for general objective functions. Finally, some recent research on the updating of full quadratic models is described briefly, using fewer interpolation equations than before. The resultant freedom is taken up by minimizing the Frobenius norm of the change to the second derivative matrix of the model. A preliminary version of this method provides some very promising numerical results.
14 schema:genre research_article
15 schema:inLanguage en
16 schema:isAccessibleForFree false
17 schema:isPartOf Nbd258c3cd370462c9c440145ea0f291d
18 Nc9710afbc55e4c07b7783d2fea812ddc
19 sg:journal.1047630
20 schema:name On trust region methods for unconstrained minimization without derivatives
21 schema:pagination 605-623
22 schema:productId N744d442f229b41c89f82479a7277fedc
23 Nb8e449f993a3467b8576d7bc4fcb299d
24 Ne120dd76b3f14a388acac266f91b4e82
25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052549612
26 https://doi.org/10.1007/s10107-003-0430-6
27 schema:sdDatePublished 2019-04-10T17:36
28 schema:sdLicense https://scigraph.springernature.com/explorer/license/
29 schema:sdPublisher N369c0a2f39a74e4ba2eda9fe5c39e239
30 schema:url http://link.springer.com/10.1007%2Fs10107-003-0430-6
31 sgo:license sg:explorer/license/
32 sgo:sdDataset articles
33 rdf:type schema:ScholarlyArticle
34 N369c0a2f39a74e4ba2eda9fe5c39e239 schema:name Springer Nature - SN SciGraph project
35 rdf:type schema:Organization
36 N744d442f229b41c89f82479a7277fedc schema:name dimensions_id
37 schema:value pub.1052549612
38 rdf:type schema:PropertyValue
39 N849871db1180424fa08b999b7acc8a1b rdf:first sg:person.07731545105.07
40 rdf:rest rdf:nil
41 Nb8e449f993a3467b8576d7bc4fcb299d schema:name readcube_id
42 schema:value fa4fa8fc76fc1b10a5fbfb76eb328e976d5d212c029e9c45011b2a933395815d
43 rdf:type schema:PropertyValue
44 Nbd258c3cd370462c9c440145ea0f291d schema:issueNumber 3
45 rdf:type schema:PublicationIssue
46 Nc9710afbc55e4c07b7783d2fea812ddc schema:volumeNumber 97
47 rdf:type schema:PublicationVolume
48 Ne120dd76b3f14a388acac266f91b4e82 schema:name doi
49 schema:value 10.1007/s10107-003-0430-6
50 rdf:type schema:PropertyValue
51 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
52 schema:name Mathematical Sciences
53 rdf:type schema:DefinedTerm
54 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
55 schema:name Numerical and Computational Mathematics
56 rdf:type schema:DefinedTerm
57 sg:journal.1047630 schema:issn 0025-5610
58 1436-4646
59 schema:name Mathematical Programming
60 rdf:type schema:Periodical
61 sg:person.07731545105.07 schema:affiliation https://www.grid.ac/institutes/grid.5335.0
62 schema:familyName Powell
63 schema:givenName M.J.D.
64 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07731545105.07
65 rdf:type schema:Person
66 sg:pub.10.1007/bf02614326 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052304289
67 https://doi.org/10.1007/bf02614326
68 rdf:type schema:CreativeWork
69 sg:pub.10.1007/s101070100290 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026120726
70 https://doi.org/10.1007/s101070100290
71 rdf:type schema:CreativeWork
72 https://doi.org/10.1080/10556780108805839 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030240591
73 rdf:type schema:CreativeWork
74 https://doi.org/10.1090/s0025-5718-1978-0483452-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048465494
75 rdf:type schema:CreativeWork
76 https://doi.org/10.1093/comjnl/6.2.163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018099115
77 rdf:type schema:CreativeWork
78 https://doi.org/10.1093/imamat/12.3.339 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059684357
79 rdf:type schema:CreativeWork
80 https://doi.org/10.1137/0904038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062855628
81 rdf:type schema:CreativeWork
82 https://www.grid.ac/institutes/grid.5335.0 schema:alternateName University of Cambridge
83 schema:name Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, CB3 OWA, Cambridge, England
84 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...