Renormalization of higher derivative scalar theory View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2002-12

AUTHORS

Pierre Gosselin, Hervé Mohrbach

ABSTRACT

We consider a lattice scalar field model with higher derivative terms in the action whose phase diagram contains a tricritical point which is also a triple point between the paramagnetic, ferromagnetic and antiferromagnetic phases. The continuum limit is defined by approching the tricritical point from the paramagnetic side. Contrary to the lattice tricritical g6ϕ6 model we can do a perturbative computation in dimension four. The non-perturbative aspect of the theory relies on the dispersion relation which has the particular feature of having several minima similar to the propagator of lattice fermions. It is shown that this new model is perturbatively renormalizable and provides a non trivial mass spectrum. The positive norm Hilbert space and the unitarity of the time evolution operator in Minkowski space is established by means of the reflection positivity property. More... »

PAGES

1-10

Journal

TITLE

EPJ direct

ISSUE

1

VOLUME

4

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s1010502c0010

DOI

http://dx.doi.org/10.1007/s1010502c0010

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1048544839


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institut Fourier", 
          "id": "https://www.grid.ac/institutes/grid.466764.1", 
          "name": [
            "Institut Fourier, Universit\u00e9 Grenoble I, UMR 5582 CNRS-UJF, UFR de Math\u00e9matiques, BP74, 38402, Saint Martin d\u2019H\u00e8res, Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gosselin", 
        "givenName": "Pierre", 
        "id": "sg:person.01276345574.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01276345574.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut Charles Sadron", 
          "id": "https://www.grid.ac/institutes/grid.461902.8", 
          "name": [
            "CNRS UPR 022, Institut Charles Sadron, 6 rue Boussingault, 67083, Strasbourg Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mohrbach", 
        "givenName": "Herv\u00e9", 
        "id": "sg:person.01271041061.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01271041061.86"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2002-12", 
    "datePublishedReg": "2002-12-01", 
    "description": "We consider a lattice scalar field model with higher derivative terms in the action whose phase diagram contains a tricritical point which is also a triple point between the paramagnetic, ferromagnetic and antiferromagnetic phases. The continuum limit is defined by approching the tricritical point from the paramagnetic side. Contrary to the lattice tricritical g6\u03d56 model we can do a perturbative computation in dimension four. The non-perturbative aspect of the theory relies on the dispersion relation which has the particular feature of having several minima similar to the propagator of lattice fermions. It is shown that this new model is perturbatively renormalizable and provides a non trivial mass spectrum. The positive norm Hilbert space and the unitarity of the time evolution operator in Minkowski space is established by means of the reflection positivity property.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s1010502c0010", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1147169", 
        "issn": [
          "1435-3725"
        ], 
        "name": "EPJ direct", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "4"
      }
    ], 
    "name": "Renormalization of higher derivative scalar theory", 
    "pagination": "1-10", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e7425662672420e133208f30f66e9d54ca02c7d100e99d3fa91056f798048338"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s1010502c0010"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1048544839"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s1010502c0010", 
      "https://app.dimensions.ai/details/publication/pub.1048544839"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:51", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000534.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs1010502c0010"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s1010502c0010'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s1010502c0010'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s1010502c0010'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s1010502c0010'


 

This table displays all metadata directly associated to this object as RDF triples.

70 TRIPLES      20 PREDICATES      27 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s1010502c0010 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N56c2a69459cf41139a8ea80a99f441a0
4 schema:datePublished 2002-12
5 schema:datePublishedReg 2002-12-01
6 schema:description We consider a lattice scalar field model with higher derivative terms in the action whose phase diagram contains a tricritical point which is also a triple point between the paramagnetic, ferromagnetic and antiferromagnetic phases. The continuum limit is defined by approching the tricritical point from the paramagnetic side. Contrary to the lattice tricritical g6ϕ6 model we can do a perturbative computation in dimension four. The non-perturbative aspect of the theory relies on the dispersion relation which has the particular feature of having several minima similar to the propagator of lattice fermions. It is shown that this new model is perturbatively renormalizable and provides a non trivial mass spectrum. The positive norm Hilbert space and the unitarity of the time evolution operator in Minkowski space is established by means of the reflection positivity property.
7 schema:genre research_article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N0c394895310647e4b8ebb93ded2e9373
11 Nbb7beaad797d471db167c399debaad0f
12 sg:journal.1147169
13 schema:name Renormalization of higher derivative scalar theory
14 schema:pagination 1-10
15 schema:productId N4df12d06c97040cfa04bb430eff4103c
16 Na8f22e5f829d49758e2436bf7c116a03
17 Nee13c82e20c54a2b99b6eec1414ff826
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048544839
19 https://doi.org/10.1007/s1010502c0010
20 schema:sdDatePublished 2019-04-10T20:51
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher N6656b70e573c4b1f8a1ad1be264c427e
23 schema:url http://link.springer.com/10.1007%2Fs1010502c0010
24 sgo:license sg:explorer/license/
25 sgo:sdDataset articles
26 rdf:type schema:ScholarlyArticle
27 N0c394895310647e4b8ebb93ded2e9373 schema:issueNumber 1
28 rdf:type schema:PublicationIssue
29 N4df12d06c97040cfa04bb430eff4103c schema:name doi
30 schema:value 10.1007/s1010502c0010
31 rdf:type schema:PropertyValue
32 N56c2a69459cf41139a8ea80a99f441a0 rdf:first sg:person.01276345574.54
33 rdf:rest N5e124c0b7b654a3b93de4df05907a87a
34 N5e124c0b7b654a3b93de4df05907a87a rdf:first sg:person.01271041061.86
35 rdf:rest rdf:nil
36 N6656b70e573c4b1f8a1ad1be264c427e schema:name Springer Nature - SN SciGraph project
37 rdf:type schema:Organization
38 Na8f22e5f829d49758e2436bf7c116a03 schema:name readcube_id
39 schema:value e7425662672420e133208f30f66e9d54ca02c7d100e99d3fa91056f798048338
40 rdf:type schema:PropertyValue
41 Nbb7beaad797d471db167c399debaad0f schema:volumeNumber 4
42 rdf:type schema:PublicationVolume
43 Nee13c82e20c54a2b99b6eec1414ff826 schema:name dimensions_id
44 schema:value pub.1048544839
45 rdf:type schema:PropertyValue
46 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
47 schema:name Mathematical Sciences
48 rdf:type schema:DefinedTerm
49 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
50 schema:name Pure Mathematics
51 rdf:type schema:DefinedTerm
52 sg:journal.1147169 schema:issn 1435-3725
53 schema:name EPJ direct
54 rdf:type schema:Periodical
55 sg:person.01271041061.86 schema:affiliation https://www.grid.ac/institutes/grid.461902.8
56 schema:familyName Mohrbach
57 schema:givenName Hervé
58 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01271041061.86
59 rdf:type schema:Person
60 sg:person.01276345574.54 schema:affiliation https://www.grid.ac/institutes/grid.466764.1
61 schema:familyName Gosselin
62 schema:givenName Pierre
63 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01276345574.54
64 rdf:type schema:Person
65 https://www.grid.ac/institutes/grid.461902.8 schema:alternateName Institut Charles Sadron
66 schema:name CNRS UPR 022, Institut Charles Sadron, 6 rue Boussingault, 67083, Strasbourg Cedex, France
67 rdf:type schema:Organization
68 https://www.grid.ac/institutes/grid.466764.1 schema:alternateName Institut Fourier
69 schema:name Institut Fourier, Université Grenoble I, UMR 5582 CNRS-UJF, UFR de Mathématiques, BP74, 38402, Saint Martin d’Hères, Cedex, France
70 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...