The impact of policy mixes on new energy vehicle diffusion in China View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-02-22

AUTHORS

Xiuling Liu, Fuji Xie, Haihua Wang, Chujiang Xue

ABSTRACT

The Chinese government has instituted a number of policies to actively promote the diffusion of new energy vehicles (NEVs). There is widespread consensus that policy mixes can drive NEV diffusion effectively. To verify this consensus, we construct a two-dimensional framework of NEV policy instruments: producer-orientation versus consumer-orientation instruments, economic in cash versus regulatory instruments and classify NEV policy mixes. Then, we analyse the impact of policy mixes on NEV diffusion among enterprises and consumers by building an evolutionary game model. And according to the concept of stable area in the evolutionary game, we propose a definition of policy effect. The results show: (1) Policy mixes can reduce the saddle point of the auto market game and accelerate the spread of NEVs. In the early stages of the NEV industry, the government should take the policy mix strategy with four policies, and economic in cash instrument should be the main policy. (2) Policy mixes composed of producer-orientation and consumer-orientation instruments have a synergy or complementarity to promote NEV diffusion effectively. (3) With the increasing rate of NEV production and consumption, the government should adopt policy mixes mainly composed of regulatory instruments and rather than economic instruments.Graphical abstract More... »

PAGES

1457-1474

References to SciGraph publications

  • 2012-03-03. New energy vehicles in China: policies, demonstration, and progress in MITIGATION AND ADAPTATION STRATEGIES FOR GLOBAL CHANGE
  • 1973-11. The Logic of Animal Conflict in NATURE
  • 2013-10-19. On evaluating success in complex policy mixes: the case of renewable energy support schemes in POLICY SCIENCES
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10098-021-02040-z

    DOI

    http://dx.doi.org/10.1007/s10098-021-02040-z

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1135555849

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/33642968


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/05", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Environmental Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Business Economics Department, Shanghai Business School, 200235, Shanghai, China", 
              "id": "http://www.grid.ac/institutes/grid.469163.f", 
              "name": [
                "Business Economics Department, Shanghai Business School, 200235, Shanghai, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liu", 
            "givenName": "Xiuling", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Antai College of Economics and Management, Shanghai Jiao Tong University, 200030, Shanghai, China", 
              "id": "http://www.grid.ac/institutes/grid.16821.3c", 
              "name": [
                "Antai College of Economics and Management, Shanghai Jiao Tong University, 200030, Shanghai, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Xie", 
            "givenName": "Fuji", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Management, Shanghai University, 200444, Shanghai, China", 
              "id": "http://www.grid.ac/institutes/grid.39436.3b", 
              "name": [
                "School of Management, Shanghai University, 200444, Shanghai, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Haihua", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Antai College of Economics and Management, Shanghai Jiao Tong University, 200030, Shanghai, China", 
              "id": "http://www.grid.ac/institutes/grid.16821.3c", 
              "name": [
                "Antai College of Economics and Management, Shanghai Jiao Tong University, 200030, Shanghai, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Xue", 
            "givenName": "Chujiang", 
            "id": "sg:person.010311050353.54", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010311050353.54"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s11077-013-9189-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049279496", 
              "https://doi.org/10.1007/s11077-013-9189-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11027-012-9358-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039155240", 
              "https://doi.org/10.1007/s11027-012-9358-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/246015a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005206609", 
              "https://doi.org/10.1038/246015a0"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-02-22", 
        "datePublishedReg": "2021-02-22", 
        "description": "The Chinese government has instituted a number of policies to actively promote the diffusion of new energy vehicles (NEVs). There is widespread consensus that policy mixes can drive NEV diffusion effectively. To verify this consensus, we construct a two-dimensional framework of NEV policy instruments: producer-orientation versus consumer-orientation instruments, economic in cash versus regulatory instruments and classify NEV policy mixes. Then, we analyse the impact of policy mixes on NEV diffusion among enterprises and consumers by building an evolutionary game model. And according to the concept of stable area in the evolutionary game, we propose a definition of policy effect. The results show: (1) Policy mixes can reduce the saddle point of the auto market game and accelerate the spread of NEVs. In the early stages of the NEV industry, the government should take the policy mix strategy with four policies, and economic in cash instrument should be the main policy. (2) Policy mixes composed of producer-orientation and consumer-orientation instruments have a synergy or complementarity to promote NEV diffusion effectively. (3) With the increasing rate of NEV production and consumption, the government should adopt policy mixes mainly composed of regulatory instruments\u00a0and rather than economic instruments.Graphical abstract", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s10098-021-02040-z", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1136432", 
            "issn": [
              "1618-954X", 
              "1618-9558"
            ], 
            "name": "Clean Technologies and Environmental Policy", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "5", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "23"
          }
        ], 
        "keywords": [
          "policy mix", 
          "new energy vehicles", 
          "regulatory instruments", 
          "evolutionary game model", 
          "number of policies", 
          "market game", 
          "policy effects", 
          "cash instruments", 
          "economic instruments", 
          "policy instruments", 
          "NEV industry", 
          "vehicle diffusion", 
          "game model", 
          "main policies", 
          "Chinese government", 
          "mix strategy", 
          "evolutionary game", 
          "policy", 
          "government", 
          "widespread consensus", 
          "energy vehicles", 
          "mix", 
          "game", 
          "cash", 
          "instrument", 
          "impact", 
          "consumers", 
          "complementarity", 
          "enterprises", 
          "consensus", 
          "two-dimensional framework", 
          "industry", 
          "China", 
          "framework", 
          "consumption", 
          "concept", 
          "spread", 
          "model", 
          "synergy", 
          "definition", 
          "strategies", 
          "diffusion", 
          "rate", 
          "area", 
          "production", 
          "effect", 
          "results", 
          "point", 
          "saddle point", 
          "vehicles", 
          "number", 
          "stable areas", 
          "early stages", 
          "stage"
        ], 
        "name": "The impact of policy mixes on new energy vehicle diffusion in China", 
        "pagination": "1457-1474", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1135555849"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10098-021-02040-z"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "33642968"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10098-021-02040-z", 
          "https://app.dimensions.ai/details/publication/pub.1135555849"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:43", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_902.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s10098-021-02040-z"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10098-021-02040-z'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10098-021-02040-z'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10098-021-02040-z'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10098-021-02040-z'


     

    This table displays all metadata directly associated to this object as RDF triples.

    155 TRIPLES      21 PREDICATES      83 URIs      71 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10098-021-02040-z schema:about anzsrc-for:05
    2 anzsrc-for:06
    3 anzsrc-for:09
    4 schema:author Nfff0c4f956db437f81c66647a598f446
    5 schema:citation sg:pub.10.1007/s11027-012-9358-6
    6 sg:pub.10.1007/s11077-013-9189-7
    7 sg:pub.10.1038/246015a0
    8 schema:datePublished 2021-02-22
    9 schema:datePublishedReg 2021-02-22
    10 schema:description The Chinese government has instituted a number of policies to actively promote the diffusion of new energy vehicles (NEVs). There is widespread consensus that policy mixes can drive NEV diffusion effectively. To verify this consensus, we construct a two-dimensional framework of NEV policy instruments: producer-orientation versus consumer-orientation instruments, economic in cash versus regulatory instruments and classify NEV policy mixes. Then, we analyse the impact of policy mixes on NEV diffusion among enterprises and consumers by building an evolutionary game model. And according to the concept of stable area in the evolutionary game, we propose a definition of policy effect. The results show: (1) Policy mixes can reduce the saddle point of the auto market game and accelerate the spread of NEVs. In the early stages of the NEV industry, the government should take the policy mix strategy with four policies, and economic in cash instrument should be the main policy. (2) Policy mixes composed of producer-orientation and consumer-orientation instruments have a synergy or complementarity to promote NEV diffusion effectively. (3) With the increasing rate of NEV production and consumption, the government should adopt policy mixes mainly composed of regulatory instruments and rather than economic instruments.Graphical abstract
    11 schema:genre article
    12 schema:isAccessibleForFree true
    13 schema:isPartOf N789fa360120049eb9fd4e7ea097d61b5
    14 Nb27100a3a9534cc3901a79f1d7c32139
    15 sg:journal.1136432
    16 schema:keywords China
    17 Chinese government
    18 NEV industry
    19 area
    20 cash
    21 cash instruments
    22 complementarity
    23 concept
    24 consensus
    25 consumers
    26 consumption
    27 definition
    28 diffusion
    29 early stages
    30 economic instruments
    31 effect
    32 energy vehicles
    33 enterprises
    34 evolutionary game
    35 evolutionary game model
    36 framework
    37 game
    38 game model
    39 government
    40 impact
    41 industry
    42 instrument
    43 main policies
    44 market game
    45 mix
    46 mix strategy
    47 model
    48 new energy vehicles
    49 number
    50 number of policies
    51 point
    52 policy
    53 policy effects
    54 policy instruments
    55 policy mix
    56 production
    57 rate
    58 regulatory instruments
    59 results
    60 saddle point
    61 spread
    62 stable areas
    63 stage
    64 strategies
    65 synergy
    66 two-dimensional framework
    67 vehicle diffusion
    68 vehicles
    69 widespread consensus
    70 schema:name The impact of policy mixes on new energy vehicle diffusion in China
    71 schema:pagination 1457-1474
    72 schema:productId N2b9bc3049780422f97194e583d1e572a
    73 N3aab4da058ca4dc4b77eef19be6f6dd6
    74 Ndb671fc0bb084797b16ecab64d430cc2
    75 schema:sameAs https://app.dimensions.ai/details/publication/pub.1135555849
    76 https://doi.org/10.1007/s10098-021-02040-z
    77 schema:sdDatePublished 2022-12-01T06:43
    78 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    79 schema:sdPublisher N1b5c86a418c3451f9bc016228c22dd48
    80 schema:url https://doi.org/10.1007/s10098-021-02040-z
    81 sgo:license sg:explorer/license/
    82 sgo:sdDataset articles
    83 rdf:type schema:ScholarlyArticle
    84 N1b5c86a418c3451f9bc016228c22dd48 schema:name Springer Nature - SN SciGraph project
    85 rdf:type schema:Organization
    86 N1da09c62908e44a3a602956cb571253b schema:affiliation grid-institutes:grid.469163.f
    87 schema:familyName Liu
    88 schema:givenName Xiuling
    89 rdf:type schema:Person
    90 N217dd729e98d496cabefd2231f9b384b rdf:first N69756580aa384c2487f94a79946b8fb6
    91 rdf:rest Nf97c0b0d8ce24994ae9cf54b6eab0ec7
    92 N2b9bc3049780422f97194e583d1e572a schema:name pubmed_id
    93 schema:value 33642968
    94 rdf:type schema:PropertyValue
    95 N3aab4da058ca4dc4b77eef19be6f6dd6 schema:name doi
    96 schema:value 10.1007/s10098-021-02040-z
    97 rdf:type schema:PropertyValue
    98 N69756580aa384c2487f94a79946b8fb6 schema:affiliation grid-institutes:grid.39436.3b
    99 schema:familyName Wang
    100 schema:givenName Haihua
    101 rdf:type schema:Person
    102 N789fa360120049eb9fd4e7ea097d61b5 schema:issueNumber 5
    103 rdf:type schema:PublicationIssue
    104 N94e98676b6094ca1916d6133e1e07893 schema:affiliation grid-institutes:grid.16821.3c
    105 schema:familyName Xie
    106 schema:givenName Fuji
    107 rdf:type schema:Person
    108 Nb27100a3a9534cc3901a79f1d7c32139 schema:volumeNumber 23
    109 rdf:type schema:PublicationVolume
    110 Nd5c9ed33f0c748518e30edd232622d52 rdf:first N94e98676b6094ca1916d6133e1e07893
    111 rdf:rest N217dd729e98d496cabefd2231f9b384b
    112 Ndb671fc0bb084797b16ecab64d430cc2 schema:name dimensions_id
    113 schema:value pub.1135555849
    114 rdf:type schema:PropertyValue
    115 Nf97c0b0d8ce24994ae9cf54b6eab0ec7 rdf:first sg:person.010311050353.54
    116 rdf:rest rdf:nil
    117 Nfff0c4f956db437f81c66647a598f446 rdf:first N1da09c62908e44a3a602956cb571253b
    118 rdf:rest Nd5c9ed33f0c748518e30edd232622d52
    119 anzsrc-for:05 schema:inDefinedTermSet anzsrc-for:
    120 schema:name Environmental Sciences
    121 rdf:type schema:DefinedTerm
    122 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    123 schema:name Biological Sciences
    124 rdf:type schema:DefinedTerm
    125 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    126 schema:name Engineering
    127 rdf:type schema:DefinedTerm
    128 sg:journal.1136432 schema:issn 1618-954X
    129 1618-9558
    130 schema:name Clean Technologies and Environmental Policy
    131 schema:publisher Springer Nature
    132 rdf:type schema:Periodical
    133 sg:person.010311050353.54 schema:affiliation grid-institutes:grid.16821.3c
    134 schema:familyName Xue
    135 schema:givenName Chujiang
    136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010311050353.54
    137 rdf:type schema:Person
    138 sg:pub.10.1007/s11027-012-9358-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039155240
    139 https://doi.org/10.1007/s11027-012-9358-6
    140 rdf:type schema:CreativeWork
    141 sg:pub.10.1007/s11077-013-9189-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049279496
    142 https://doi.org/10.1007/s11077-013-9189-7
    143 rdf:type schema:CreativeWork
    144 sg:pub.10.1038/246015a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005206609
    145 https://doi.org/10.1038/246015a0
    146 rdf:type schema:CreativeWork
    147 grid-institutes:grid.16821.3c schema:alternateName Antai College of Economics and Management, Shanghai Jiao Tong University, 200030, Shanghai, China
    148 schema:name Antai College of Economics and Management, Shanghai Jiao Tong University, 200030, Shanghai, China
    149 rdf:type schema:Organization
    150 grid-institutes:grid.39436.3b schema:alternateName School of Management, Shanghai University, 200444, Shanghai, China
    151 schema:name School of Management, Shanghai University, 200444, Shanghai, China
    152 rdf:type schema:Organization
    153 grid-institutes:grid.469163.f schema:alternateName Business Economics Department, Shanghai Business School, 200235, Shanghai, China
    154 schema:name Business Economics Department, Shanghai Business School, 200235, Shanghai, China
    155 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...