true
article
supersingular elliptic curves
Abstract. In this paper we give a characterization of the height of K3 surfaces in characteristic p>0. This enables us to calculate the cycle classes in families of K3 surfaces of the loci where the height is at least h. The formulas for such loci can be seen as generalizations of the famous formula of Deuring for the number of supersingular elliptic curves in characteristic p. In order to describe the tangent spaces to these loci we study the first cohomology of higher closed forms.
tangent space
number
class
en
such loci
order
famous formula
family
closed form
higher closed forms
cohomology
https://doi.org/10.1007/s100970000021
cycle classes
loci
On a stratification of the moduli of K3 surfaces
generalization
articles
2000-08
2022-01-01T18:11
surface
first cohomology
elliptic curves
height
formula
2000-08-01
space
form
characterization
paper
259-290
K3 surfaces
stratification
https://scigraph.springernature.com/explorer/license/
modulus
curves
Graduate School of Mathematical Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8914, Japan, e-mail: tkatsura@ms.u-tokyo.ac.jp, JP
Graduate School of Mathematical Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8914, Japan, e-mail: tkatsura@ms.u-tokyo.ac.jp, JP
Pure Mathematics
G.
van der Geer
Korteweg-de Vries Instituut, Universiteit van Amsterdam, Plantage Muidergracht 24, 1018 TV Amsterdam, The Netherlands, e-mail: geer@wins.uva.nl, NL
Korteweg-de Vries Instituut, Universiteit van Amsterdam, Plantage Muidergracht 24, 1018 TV Amsterdam, The Netherlands, e-mail: geer@wins.uva.nl, NL
Mathematical Sciences
pub.1054521355
dimensions_id
Springer Nature - SN SciGraph project
doi
10.1007/s100970000021
2
Journal of the European Mathematical Society
1435-9863
1435-9855
European Mathematical Society - EMS - Publishing House GmbH
T.
Katsura
3