On a stratification of the moduli of K3 surfaces View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2000-08

AUTHORS

G. van der Geer, T. Katsura

ABSTRACT

. In this paper we give a characterization of the height of K3 surfaces in characteristic p>0. This enables us to calculate the cycle classes in families of K3 surfaces of the loci where the height is at least h. The formulas for such loci can be seen as generalizations of the famous formula of Deuring for the number of supersingular elliptic curves in characteristic p. In order to describe the tangent spaces to these loci we study the first cohomology of higher closed forms. More... »

PAGES

259-290

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s100970000021

DOI

http://dx.doi.org/10.1007/s100970000021

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1054521355


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Korteweg-de Vries Instituut, Universiteit van Amsterdam, Plantage Muidergracht 24, 1018 TV Amsterdam, The Netherlands, e-mail: geer@wins.uva.nl, NL", 
          "id": "http://www.grid.ac/institutes/grid.7177.6", 
          "name": [
            "Korteweg-de Vries Instituut, Universiteit van Amsterdam, Plantage Muidergracht 24, 1018 TV Amsterdam, The Netherlands, e-mail: geer@wins.uva.nl, NL"
          ], 
          "type": "Organization"
        }, 
        "familyName": "van der Geer", 
        "givenName": "G.", 
        "id": "sg:person.011551332252.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011551332252.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Graduate School of Mathematical Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8914, Japan, e-mail: tkatsura@ms.u-tokyo.ac.jp, JP", 
          "id": "http://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Graduate School of Mathematical Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8914, Japan, e-mail: tkatsura@ms.u-tokyo.ac.jp, JP"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Katsura", 
        "givenName": "T.", 
        "id": "sg:person.015247537115.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015247537115.90"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2000-08", 
    "datePublishedReg": "2000-08-01", 
    "description": "Abstract. In this paper we give a characterization of the height of K3 surfaces in characteristic p>0. This enables us to calculate the cycle classes in families of K3 surfaces of the loci where the height is at least h. The formulas for such loci can be seen as generalizations of the famous formula of Deuring for the number of supersingular elliptic curves in characteristic p. In order to describe the tangent spaces to these loci we study the first cohomology of higher closed forms.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s100970000021", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1139849", 
        "issn": [
          "1435-9855", 
          "1435-9863"
        ], 
        "name": "Journal of the European Mathematical Society", 
        "publisher": "European Mathematical Society - EMS - Publishing House GmbH", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2"
      }
    ], 
    "keywords": [
      "surface", 
      "modulus", 
      "height", 
      "closed form", 
      "characterization", 
      "formula", 
      "curves", 
      "order", 
      "stratification", 
      "cycle classes", 
      "space", 
      "number", 
      "form", 
      "class", 
      "generalization", 
      "tangent space", 
      "famous formula", 
      "family", 
      "K3 surfaces", 
      "supersingular elliptic curves", 
      "elliptic curves", 
      "loci", 
      "first cohomology", 
      "paper", 
      "such loci", 
      "cohomology", 
      "higher closed forms"
    ], 
    "name": "On a stratification of the moduli of K3 surfaces", 
    "pagination": "259-290", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1054521355"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s100970000021"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s100970000021", 
      "https://app.dimensions.ai/details/publication/pub.1054521355"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_309.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s100970000021"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s100970000021'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s100970000021'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s100970000021'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s100970000021'


 

This table displays all metadata directly associated to this object as RDF triples.

95 TRIPLES      21 PREDICATES      53 URIs      45 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s100970000021 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nbba7cb9302cb41f3987f3dbc8bd5f5ee
4 schema:datePublished 2000-08
5 schema:datePublishedReg 2000-08-01
6 schema:description Abstract. In this paper we give a characterization of the height of K3 surfaces in characteristic p>0. This enables us to calculate the cycle classes in families of K3 surfaces of the loci where the height is at least h. The formulas for such loci can be seen as generalizations of the famous formula of Deuring for the number of supersingular elliptic curves in characteristic p. In order to describe the tangent spaces to these loci we study the first cohomology of higher closed forms.
7 schema:genre article
8 schema:inLanguage en
9 schema:isAccessibleForFree true
10 schema:isPartOf N1f5777cf617d4d48aa078051237b4a82
11 N6ead2456e26648bca633f619ccec2be1
12 sg:journal.1139849
13 schema:keywords K3 surfaces
14 characterization
15 class
16 closed form
17 cohomology
18 curves
19 cycle classes
20 elliptic curves
21 family
22 famous formula
23 first cohomology
24 form
25 formula
26 generalization
27 height
28 higher closed forms
29 loci
30 modulus
31 number
32 order
33 paper
34 space
35 stratification
36 such loci
37 supersingular elliptic curves
38 surface
39 tangent space
40 schema:name On a stratification of the moduli of K3 surfaces
41 schema:pagination 259-290
42 schema:productId N11b85ea20f4b4f05a3262f99a72c974f
43 Nfdc0b2d3646a4a5bb54007d093b1c54f
44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054521355
45 https://doi.org/10.1007/s100970000021
46 schema:sdDatePublished 2021-12-01T19:11
47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
48 schema:sdPublisher N618e14141b8c46ce84f182b83239540c
49 schema:url https://doi.org/10.1007/s100970000021
50 sgo:license sg:explorer/license/
51 sgo:sdDataset articles
52 rdf:type schema:ScholarlyArticle
53 N11b85ea20f4b4f05a3262f99a72c974f schema:name dimensions_id
54 schema:value pub.1054521355
55 rdf:type schema:PropertyValue
56 N1f5777cf617d4d48aa078051237b4a82 schema:volumeNumber 2
57 rdf:type schema:PublicationVolume
58 N618e14141b8c46ce84f182b83239540c schema:name Springer Nature - SN SciGraph project
59 rdf:type schema:Organization
60 N6ead2456e26648bca633f619ccec2be1 schema:issueNumber 3
61 rdf:type schema:PublicationIssue
62 Nb04e5f4cfa00404e9203cb5c8d09c7d0 rdf:first sg:person.015247537115.90
63 rdf:rest rdf:nil
64 Nbba7cb9302cb41f3987f3dbc8bd5f5ee rdf:first sg:person.011551332252.27
65 rdf:rest Nb04e5f4cfa00404e9203cb5c8d09c7d0
66 Nfdc0b2d3646a4a5bb54007d093b1c54f schema:name doi
67 schema:value 10.1007/s100970000021
68 rdf:type schema:PropertyValue
69 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
70 schema:name Mathematical Sciences
71 rdf:type schema:DefinedTerm
72 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
73 schema:name Pure Mathematics
74 rdf:type schema:DefinedTerm
75 sg:journal.1139849 schema:issn 1435-9855
76 1435-9863
77 schema:name Journal of the European Mathematical Society
78 schema:publisher European Mathematical Society - EMS - Publishing House GmbH
79 rdf:type schema:Periodical
80 sg:person.011551332252.27 schema:affiliation grid-institutes:grid.7177.6
81 schema:familyName van der Geer
82 schema:givenName G.
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011551332252.27
84 rdf:type schema:Person
85 sg:person.015247537115.90 schema:affiliation grid-institutes:grid.26999.3d
86 schema:familyName Katsura
87 schema:givenName T.
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015247537115.90
89 rdf:type schema:Person
90 grid-institutes:grid.26999.3d schema:alternateName Graduate School of Mathematical Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8914, Japan, e-mail: tkatsura@ms.u-tokyo.ac.jp, JP
91 schema:name Graduate School of Mathematical Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8914, Japan, e-mail: tkatsura@ms.u-tokyo.ac.jp, JP
92 rdf:type schema:Organization
93 grid-institutes:grid.7177.6 schema:alternateName Korteweg-de Vries Instituut, Universiteit van Amsterdam, Plantage Muidergracht 24, 1018 TV Amsterdam, The Netherlands, e-mail: geer@wins.uva.nl, NL
94 schema:name Korteweg-de Vries Instituut, Universiteit van Amsterdam, Plantage Muidergracht 24, 1018 TV Amsterdam, The Netherlands, e-mail: geer@wins.uva.nl, NL
95 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...