Ontology type: schema:ScholarlyArticle Open Access: True
2003-09
AUTHORSG. Alberti, S. Baldo, G. Orlandi
ABSTRACTThe distributional k-dimensional Jacobian of a map u in the Sobolev space W1,k-1 which takes values in the the sphere Sk-1 can be viewed as the boundary of a rectifiable current of codimension k carried by (part of) the singularity of u which is topologically relevant. The main purpose of this paper is to investigate the range of the Jacobian operator; in particular, we show that any boundary M of codimension k can be realized as Jacobian of a Sobolev map valued in Sk-1. In case M is polyhedral, the map we construct is smooth outside M plus an additional polyhedral set of lower dimension, and can be used in the constructive part of the proof of a Γ-convergence result for functionals of Ginzburg-Landau type, as described in [2]. More... »
PAGES275-311
http://scigraph.springernature.com/pub.10.1007/s10097-003-0053-5
DOIhttp://dx.doi.org/10.1007/s10097-003-0053-5
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1025043179
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/2002",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Cultural Studies",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/20",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Language, Communication and Culture",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "University of Pisa",
"id": "https://www.grid.ac/institutes/grid.5395.a",
"name": [
"Dipartimento di Matematica, Universit\u00e0 di Pisa, via Buonarroti 2, 56127, Pisa, Italy"
],
"type": "Organization"
},
"familyName": "Alberti",
"givenName": "G.",
"id": "sg:person.016436042355.89",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016436042355.89"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Trento",
"id": "https://www.grid.ac/institutes/grid.11696.39",
"name": [
"Dipartimento di Matematica, Universit\u00e0 di Trento, via Sommarive 14, 38050, Povo, Trento, Italy"
],
"type": "Organization"
},
"familyName": "Baldo",
"givenName": "S.",
"id": "sg:person.012667773406.94",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012667773406.94"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Verona",
"id": "https://www.grid.ac/institutes/grid.5611.3",
"name": [
"Dipartimento di Informatica, Universit\u00e0 di Verona, Strada le Grazie 15, 37134, Verona, Italy"
],
"type": "Organization"
},
"familyName": "Orlandi",
"givenName": "G.",
"id": "sg:person.012651076451.23",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012651076451.23"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/bf01205490",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1003061534",
"https://doi.org/10.1007/bf01205490"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01205490",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1003061534",
"https://doi.org/10.1007/bf01205490"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1090/s0002-9947-02-03091-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1015658142"
],
"type": "CreativeWork"
},
{
"id": "https://app.dimensions.ai/details/publication/pub.1020677833",
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-62010-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1020677833",
"https://doi.org/10.1007/978-3-642-62010-2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-62010-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1020677833",
"https://doi.org/10.1007/978-3-642-62010-2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s002290050114",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1020769629",
"https://doi.org/10.1007/s002290050114"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00251429",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1030181345",
"https://doi.org/10.1007/bf00251429"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00251429",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1030181345",
"https://doi.org/10.1007/bf00251429"
],
"type": "CreativeWork"
},
{
"id": "https://app.dimensions.ai/details/publication/pub.1043294424",
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4757-3951-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1043294424",
"https://doi.org/10.1007/978-1-4757-3951-0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4757-3951-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1043294424",
"https://doi.org/10.1007/978-1-4757-3951-0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00279992",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1048187466",
"https://doi.org/10.1007/bf00279992"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00279992",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1048187466",
"https://doi.org/10.1007/bf00279992"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00279992",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1048187466",
"https://doi.org/10.1007/bf00279992"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1023/a:1006655723537",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049814018",
"https://doi.org/10.1023/a:1006655723537"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s000390300006",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1051026791",
"https://doi.org/10.1007/s000390300006"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s005260100093",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1051283403",
"https://doi.org/10.1007/s005260100093"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02392449",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1051966041",
"https://doi.org/10.1007/bf02392449"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02791533",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1052931212",
"https://doi.org/10.1007/bf02791533"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02791533",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1052931212",
"https://doi.org/10.1007/bf02791533"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.2307/121100",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1069397555"
],
"type": "CreativeWork"
}
],
"datePublished": "2003-09",
"datePublishedReg": "2003-09-01",
"description": "The distributional k-dimensional Jacobian of a map u in the Sobolev space W1,k-1 which takes values in the the sphere Sk-1 can be viewed as the boundary of a rectifiable current of codimension k carried by (part of) the singularity of u which is topologically relevant. The main purpose of this paper is to investigate the range of the Jacobian operator; in particular, we show that any boundary M of codimension k can be realized as Jacobian of a Sobolev map valued in Sk-1. In case M is polyhedral, the map we construct is smooth outside M plus an additional polyhedral set of lower dimension, and can be used in the constructive part of the proof of a \u0393-convergence result for functionals of Ginzburg-Landau type, as described in [2].",
"genre": "research_article",
"id": "sg:pub.10.1007/s10097-003-0053-5",
"inLanguage": [
"en"
],
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1139849",
"issn": [
"1435-9855",
"1435-9863"
],
"name": "Journal of the European Mathematical Society",
"type": "Periodical"
},
{
"issueNumber": "3",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "5"
}
],
"name": "Functions with prescribed singularities",
"pagination": "275-311",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"774e02ab1c2c1b5d11d0c620c333c4b4f82c7d0267eb49effcba67a52cbc07b6"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s10097-003-0053-5"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1025043179"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s10097-003-0053-5",
"https://app.dimensions.ai/details/publication/pub.1025043179"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-11T01:02",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000488.jsonl",
"type": "ScholarlyArticle",
"url": "http://link.springer.com/10.1007/s10097-003-0053-5"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10097-003-0053-5'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10097-003-0053-5'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10097-003-0053-5'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10097-003-0053-5'
This table displays all metadata directly associated to this object as RDF triples.
135 TRIPLES
21 PREDICATES
42 URIs
19 LITERALS
7 BLANK NODES