Functions with prescribed singularities View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2003-09

AUTHORS

G. Alberti, S. Baldo, G. Orlandi

ABSTRACT

The distributional k-dimensional Jacobian of a map u in the Sobolev space W1,k-1 which takes values in the the sphere Sk-1 can be viewed as the boundary of a rectifiable current of codimension k carried by (part of) the singularity of u which is topologically relevant. The main purpose of this paper is to investigate the range of the Jacobian operator; in particular, we show that any boundary M of codimension k can be realized as Jacobian of a Sobolev map valued in Sk-1. In case M is polyhedral, the map we construct is smooth outside M plus an additional polyhedral set of lower dimension, and can be used in the constructive part of the proof of a Γ-convergence result for functionals of Ginzburg-Landau type, as described in [2]. More... »

PAGES

275-311

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10097-003-0053-5

DOI

http://dx.doi.org/10.1007/s10097-003-0053-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1025043179


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/2002", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cultural Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/20", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Language, Communication and Culture", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Pisa", 
          "id": "https://www.grid.ac/institutes/grid.5395.a", 
          "name": [
            "Dipartimento di Matematica, Universit\u00e0 di Pisa, via Buonarroti 2, 56127, Pisa, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alberti", 
        "givenName": "G.", 
        "id": "sg:person.016436042355.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016436042355.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Trento", 
          "id": "https://www.grid.ac/institutes/grid.11696.39", 
          "name": [
            "Dipartimento di Matematica, Universit\u00e0 di Trento, via Sommarive 14, 38050, Povo, Trento, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Baldo", 
        "givenName": "S.", 
        "id": "sg:person.012667773406.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012667773406.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Verona", 
          "id": "https://www.grid.ac/institutes/grid.5611.3", 
          "name": [
            "Dipartimento di Informatica, Universit\u00e0 di Verona, Strada le Grazie 15, 37134, Verona, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Orlandi", 
        "givenName": "G.", 
        "id": "sg:person.012651076451.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012651076451.23"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01205490", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003061534", 
          "https://doi.org/10.1007/bf01205490"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01205490", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003061534", 
          "https://doi.org/10.1007/bf01205490"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9947-02-03091-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015658142"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1020677833", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-62010-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020677833", 
          "https://doi.org/10.1007/978-3-642-62010-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-62010-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020677833", 
          "https://doi.org/10.1007/978-3-642-62010-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002290050114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020769629", 
          "https://doi.org/10.1007/s002290050114"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00251429", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030181345", 
          "https://doi.org/10.1007/bf00251429"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00251429", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030181345", 
          "https://doi.org/10.1007/bf00251429"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1043294424", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-3951-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043294424", 
          "https://doi.org/10.1007/978-1-4757-3951-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-3951-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043294424", 
          "https://doi.org/10.1007/978-1-4757-3951-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00279992", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048187466", 
          "https://doi.org/10.1007/bf00279992"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00279992", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048187466", 
          "https://doi.org/10.1007/bf00279992"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00279992", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048187466", 
          "https://doi.org/10.1007/bf00279992"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1006655723537", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049814018", 
          "https://doi.org/10.1023/a:1006655723537"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s000390300006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051026791", 
          "https://doi.org/10.1007/s000390300006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s005260100093", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051283403", 
          "https://doi.org/10.1007/s005260100093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02392449", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051966041", 
          "https://doi.org/10.1007/bf02392449"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02791533", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052931212", 
          "https://doi.org/10.1007/bf02791533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02791533", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052931212", 
          "https://doi.org/10.1007/bf02791533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/121100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069397555"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2003-09", 
    "datePublishedReg": "2003-09-01", 
    "description": "The distributional k-dimensional Jacobian of a map u in the Sobolev space W1,k-1 which takes values in the the sphere Sk-1 can be viewed as the boundary of a rectifiable current of codimension k carried by (part of) the singularity of u which is topologically relevant. The main purpose of this paper is to investigate the range of the Jacobian operator; in particular, we show that any boundary M of codimension k can be realized as Jacobian of a Sobolev map valued in Sk-1. In case M is polyhedral, the map we construct is smooth outside M plus an additional polyhedral set of lower dimension, and can be used in the constructive part of the proof of a \u0393-convergence result for functionals of Ginzburg-Landau type, as described in [2].", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10097-003-0053-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1139849", 
        "issn": [
          "1435-9855", 
          "1435-9863"
        ], 
        "name": "Journal of the European Mathematical Society", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "name": "Functions with prescribed singularities", 
    "pagination": "275-311", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "774e02ab1c2c1b5d11d0c620c333c4b4f82c7d0267eb49effcba67a52cbc07b6"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10097-003-0053-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1025043179"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10097-003-0053-5", 
      "https://app.dimensions.ai/details/publication/pub.1025043179"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:02", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000488.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s10097-003-0053-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10097-003-0053-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10097-003-0053-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10097-003-0053-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10097-003-0053-5'


 

This table displays all metadata directly associated to this object as RDF triples.

135 TRIPLES      21 PREDICATES      42 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10097-003-0053-5 schema:about anzsrc-for:20
2 anzsrc-for:2002
3 schema:author Ncc06d3f1745c4769afb4a6d5c5f8ad16
4 schema:citation sg:pub.10.1007/978-1-4757-3951-0
5 sg:pub.10.1007/978-3-642-62010-2
6 sg:pub.10.1007/bf00251429
7 sg:pub.10.1007/bf00279992
8 sg:pub.10.1007/bf01205490
9 sg:pub.10.1007/bf02392449
10 sg:pub.10.1007/bf02791533
11 sg:pub.10.1007/s000390300006
12 sg:pub.10.1007/s002290050114
13 sg:pub.10.1007/s005260100093
14 sg:pub.10.1023/a:1006655723537
15 https://app.dimensions.ai/details/publication/pub.1020677833
16 https://app.dimensions.ai/details/publication/pub.1043294424
17 https://doi.org/10.1090/s0002-9947-02-03091-x
18 https://doi.org/10.2307/121100
19 schema:datePublished 2003-09
20 schema:datePublishedReg 2003-09-01
21 schema:description The distributional k-dimensional Jacobian of a map u in the Sobolev space W1,k-1 which takes values in the the sphere Sk-1 can be viewed as the boundary of a rectifiable current of codimension k carried by (part of) the singularity of u which is topologically relevant. The main purpose of this paper is to investigate the range of the Jacobian operator; in particular, we show that any boundary M of codimension k can be realized as Jacobian of a Sobolev map valued in Sk-1. In case M is polyhedral, the map we construct is smooth outside M plus an additional polyhedral set of lower dimension, and can be used in the constructive part of the proof of a Γ-convergence result for functionals of Ginzburg-Landau type, as described in [2].
22 schema:genre research_article
23 schema:inLanguage en
24 schema:isAccessibleForFree true
25 schema:isPartOf Ncb72d6034276410fbf3e8a8bccc2d4de
26 Nefb73921033442cb89d5951afe286407
27 sg:journal.1139849
28 schema:name Functions with prescribed singularities
29 schema:pagination 275-311
30 schema:productId N6700fd710d3d4c928ce8cb7b46a1eb61
31 Nc3db92846af14a94aa2598d19b40c2f0
32 Nd6afac8f13af474bb7eb10cee0a77399
33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025043179
34 https://doi.org/10.1007/s10097-003-0053-5
35 schema:sdDatePublished 2019-04-11T01:02
36 schema:sdLicense https://scigraph.springernature.com/explorer/license/
37 schema:sdPublisher Nb68d42b9452d473aaeab041d1b2c0f94
38 schema:url http://link.springer.com/10.1007/s10097-003-0053-5
39 sgo:license sg:explorer/license/
40 sgo:sdDataset articles
41 rdf:type schema:ScholarlyArticle
42 N521d4b9dfcc045249bde2970a1d394ac rdf:first sg:person.012667773406.94
43 rdf:rest Nc45260b9651b430cb49e8f1cf554065e
44 N6700fd710d3d4c928ce8cb7b46a1eb61 schema:name dimensions_id
45 schema:value pub.1025043179
46 rdf:type schema:PropertyValue
47 Nb68d42b9452d473aaeab041d1b2c0f94 schema:name Springer Nature - SN SciGraph project
48 rdf:type schema:Organization
49 Nc3db92846af14a94aa2598d19b40c2f0 schema:name doi
50 schema:value 10.1007/s10097-003-0053-5
51 rdf:type schema:PropertyValue
52 Nc45260b9651b430cb49e8f1cf554065e rdf:first sg:person.012651076451.23
53 rdf:rest rdf:nil
54 Ncb72d6034276410fbf3e8a8bccc2d4de schema:issueNumber 3
55 rdf:type schema:PublicationIssue
56 Ncc06d3f1745c4769afb4a6d5c5f8ad16 rdf:first sg:person.016436042355.89
57 rdf:rest N521d4b9dfcc045249bde2970a1d394ac
58 Nd6afac8f13af474bb7eb10cee0a77399 schema:name readcube_id
59 schema:value 774e02ab1c2c1b5d11d0c620c333c4b4f82c7d0267eb49effcba67a52cbc07b6
60 rdf:type schema:PropertyValue
61 Nefb73921033442cb89d5951afe286407 schema:volumeNumber 5
62 rdf:type schema:PublicationVolume
63 anzsrc-for:20 schema:inDefinedTermSet anzsrc-for:
64 schema:name Language, Communication and Culture
65 rdf:type schema:DefinedTerm
66 anzsrc-for:2002 schema:inDefinedTermSet anzsrc-for:
67 schema:name Cultural Studies
68 rdf:type schema:DefinedTerm
69 sg:journal.1139849 schema:issn 1435-9855
70 1435-9863
71 schema:name Journal of the European Mathematical Society
72 rdf:type schema:Periodical
73 sg:person.012651076451.23 schema:affiliation https://www.grid.ac/institutes/grid.5611.3
74 schema:familyName Orlandi
75 schema:givenName G.
76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012651076451.23
77 rdf:type schema:Person
78 sg:person.012667773406.94 schema:affiliation https://www.grid.ac/institutes/grid.11696.39
79 schema:familyName Baldo
80 schema:givenName S.
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012667773406.94
82 rdf:type schema:Person
83 sg:person.016436042355.89 schema:affiliation https://www.grid.ac/institutes/grid.5395.a
84 schema:familyName Alberti
85 schema:givenName G.
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016436042355.89
87 rdf:type schema:Person
88 sg:pub.10.1007/978-1-4757-3951-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043294424
89 https://doi.org/10.1007/978-1-4757-3951-0
90 rdf:type schema:CreativeWork
91 sg:pub.10.1007/978-3-642-62010-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020677833
92 https://doi.org/10.1007/978-3-642-62010-2
93 rdf:type schema:CreativeWork
94 sg:pub.10.1007/bf00251429 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030181345
95 https://doi.org/10.1007/bf00251429
96 rdf:type schema:CreativeWork
97 sg:pub.10.1007/bf00279992 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048187466
98 https://doi.org/10.1007/bf00279992
99 rdf:type schema:CreativeWork
100 sg:pub.10.1007/bf01205490 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003061534
101 https://doi.org/10.1007/bf01205490
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/bf02392449 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051966041
104 https://doi.org/10.1007/bf02392449
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/bf02791533 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052931212
107 https://doi.org/10.1007/bf02791533
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/s000390300006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051026791
110 https://doi.org/10.1007/s000390300006
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/s002290050114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020769629
113 https://doi.org/10.1007/s002290050114
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/s005260100093 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051283403
116 https://doi.org/10.1007/s005260100093
117 rdf:type schema:CreativeWork
118 sg:pub.10.1023/a:1006655723537 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049814018
119 https://doi.org/10.1023/a:1006655723537
120 rdf:type schema:CreativeWork
121 https://app.dimensions.ai/details/publication/pub.1020677833 schema:CreativeWork
122 https://app.dimensions.ai/details/publication/pub.1043294424 schema:CreativeWork
123 https://doi.org/10.1090/s0002-9947-02-03091-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1015658142
124 rdf:type schema:CreativeWork
125 https://doi.org/10.2307/121100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069397555
126 rdf:type schema:CreativeWork
127 https://www.grid.ac/institutes/grid.11696.39 schema:alternateName University of Trento
128 schema:name Dipartimento di Matematica, Università di Trento, via Sommarive 14, 38050, Povo, Trento, Italy
129 rdf:type schema:Organization
130 https://www.grid.ac/institutes/grid.5395.a schema:alternateName University of Pisa
131 schema:name Dipartimento di Matematica, Università di Pisa, via Buonarroti 2, 56127, Pisa, Italy
132 rdf:type schema:Organization
133 https://www.grid.ac/institutes/grid.5611.3 schema:alternateName University of Verona
134 schema:name Dipartimento di Informatica, Università di Verona, Strada le Grazie 15, 37134, Verona, Italy
135 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...