Attributable mortality of ICU acquired bloodstream infections: a propensity-score matched analysis View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-03-10

AUTHORS

Nicolas Massart, Guilhem Wattecamps, Mikael Moriconi, Pierre Fillatre

ABSTRACT

The mortality attributable to ICU-acquired bloodstream infection (BSI) differs between studies due to statistical methods used for cohort matching. Propensity-score matching has never been used to avoid eventual bias when studying BSI attributable mortality in the ICU. We conducted an observational prospective study over a 4-year period, on patients admitted for at least 48 h in 2 intensive care units. Based on risk factors for death in the ICU and for BSI, each patient with BSI was matched with 3 patients without BSI using propensity-score matching. We performed a competitive risk analysis to study BSI mortality attributable fraction. Of 2464 included patients, 71 (2.9%) had a BSI. Propensity-score matching was highly effective and group characteristics were fully balanced. Crude mortality was 36.6% in patients with BSI and 21.6% in propensity-score matched patients (p=0.018). Attributable mortality of BSI was 2.3% [1.2-4.0] and number needed to harm was 6.7. With Fine and Gray model, a higher risk for death was observed in patients with BSI than in propensity-score matched patients (sub distribution Hazard Ratio (sdHR) = 2.11; 95% CI [1.32-3.37] p = 0.002). Patients with BSI had a higher risk for death and BSI attributable mortality fraction was 2.3%. More... »

PAGES

1-8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10096-021-04215-4

DOI

http://dx.doi.org/10.1007/s10096-021-04215-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1136289187

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/33694037


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bacteremia", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bacterial Infections", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cross Infection", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Intensive Care Units", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Propensity Score", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Factors", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Service de maladie infectieuse et de r\u00e9animation m\u00e9dicale CHU de rennes, 2, rue Henri le Guilloux, 35000 Rennes, France", 
          "id": "http://www.grid.ac/institutes/grid.411154.4", 
          "name": [
            "Service de R\u00e9animation, CH de St BRIEUC, 10, rue Marcel Proust, 22000 Saint-Brieuc, France", 
            "Facult\u00e9 de M\u00e9decine, Universit\u00e9 Rennes 1, Biosit, F-35043 Rennes, France", 
            "Service de maladie infectieuse et de r\u00e9animation m\u00e9dicale CHU de rennes, 2, rue Henri le Guilloux, 35000 Rennes, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Massart", 
        "givenName": "Nicolas", 
        "id": "sg:person.013251475137.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013251475137.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Service de R\u00e9animation, CH de QUIMPER, 14bis Avenue Yves Th\u00e9pot, 29107 Quimper, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Service de R\u00e9animation, CH de QUIMPER, 14bis Avenue Yves Th\u00e9pot, 29107 Quimper, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wattecamps", 
        "givenName": "Guilhem", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Service de R\u00e9animation, CH de QUIMPER, 14bis Avenue Yves Th\u00e9pot, 29107 Quimper, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Service de R\u00e9animation, CH de QUIMPER, 14bis Avenue Yves Th\u00e9pot, 29107 Quimper, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Moriconi", 
        "givenName": "Mikael", 
        "id": "sg:person.015442016537.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015442016537.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Service de R\u00e9animation, CH de St BRIEUC, 10, rue Marcel Proust, 22000 Saint-Brieuc, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Service de R\u00e9animation, CH de St BRIEUC, 10, rue Marcel Proust, 22000 Saint-Brieuc, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fillatre", 
        "givenName": "Pierre", 
        "id": "sg:person.01273730565.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01273730565.40"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/sj.jp.7210661", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005004372", 
          "https://doi.org/10.1038/sj.jp.7210661"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00134-012-2695-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002785702", 
          "https://doi.org/10.1007/s00134-012-2695-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/cc10114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017211757", 
          "https://doi.org/10.1186/cc10114"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10096-019-03800-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1123786767", 
          "https://doi.org/10.1007/s10096-019-03800-y"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-03-10", 
    "datePublishedReg": "2021-03-10", 
    "description": "The mortality attributable to ICU-acquired bloodstream infection (BSI) differs between studies due to statistical methods used for cohort matching. Propensity-score matching has never been used to avoid eventual bias when studying BSI attributable mortality in the ICU. We conducted an observational prospective study over a 4-year period, on patients admitted for at least 48 h in 2 intensive care units. Based on risk factors for death in the ICU and for BSI, each patient with BSI was matched with 3 patients without BSI using propensity-score matching. We performed a competitive risk analysis to study BSI mortality attributable fraction. Of 2464 included patients, 71 (2.9%) had a BSI. Propensity-score matching was highly effective and group characteristics were fully balanced. Crude mortality was 36.6% in patients with BSI and 21.6% in propensity-score matched patients (p=0.018). Attributable mortality of BSI was 2.3% [1.2-4.0] and number needed to harm was 6.7. With Fine and Gray model, a higher risk for death was observed in patients with BSI than in propensity-score matched patients (sub distribution Hazard Ratio (sdHR) = 2.11; 95% CI [1.32-3.37] p = 0.002). Patients with BSI had a higher risk for death and BSI attributable mortality fraction was 2.3%.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10096-021-04215-4", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1093599", 
        "issn": [
          "0934-9723", 
          "1435-4373"
        ], 
        "name": "European Journal of Clinical Microbiology & Infectious Diseases", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "40"
      }
    ], 
    "keywords": [
      "bloodstream infections", 
      "propensity-score matching", 
      "attributable mortality", 
      "high risk", 
      "observational prospective study", 
      "intensive care unit", 
      "attributable mortality fraction", 
      "competitive risk analysis", 
      "crude mortality", 
      "care unit", 
      "prospective study", 
      "risk factors", 
      "attributable fraction", 
      "cohort matching", 
      "patients", 
      "ICU", 
      "mortality fractions", 
      "mortality", 
      "death", 
      "infection", 
      "risk", 
      "study", 
      "group characteristics", 
      "period", 
      "factors", 
      "fraction", 
      "analysis", 
      "risk analysis", 
      "eventual bias", 
      "number", 
      "units", 
      "bias", 
      "statistical methods", 
      "characteristics", 
      "method", 
      "model", 
      "matching", 
      "grey model", 
      "fines", 
      "BSI attributable mortality", 
      "BSI mortality attributable fraction", 
      "mortality attributable fraction"
    ], 
    "name": "Attributable mortality of ICU acquired bloodstream infections: a propensity-score matched analysis", 
    "pagination": "1-8", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1136289187"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10096-021-04215-4"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "33694037"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10096-021-04215-4", 
      "https://app.dimensions.ai/details/publication/pub.1136289187"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T19:02", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_896.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10096-021-04215-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10096-021-04215-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10096-021-04215-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10096-021-04215-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10096-021-04215-4'


 

This table displays all metadata directly associated to this object as RDF triples.

195 TRIPLES      22 PREDICATES      84 URIs      71 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10096-021-04215-4 schema:about N14282e9e6dea4f428708f8e78ed12d3e
2 N17da7df1ed9d4f0f978befc427477f7b
3 N45cd80608373424ab3e6645bec2f54a6
4 N57d47a143b564b9093d22c9198f2dc6d
5 N5c22659fe5014337b1e56ec8b29b927b
6 N654cf28eba6a479c8a7de68c064e6c55
7 N6a1c571280f149afa849849212ae0b1e
8 Na185d93c40f347f09b9df56c84dae209
9 Nb43adb4024834ae794338a6fd5272c0a
10 Nc02dbe9fc39e46948c583254cddce0de
11 Nfddcdb32854449cdb986e58468c7c5f9
12 anzsrc-for:11
13 anzsrc-for:1103
14 anzsrc-for:1117
15 schema:author N83a3fcebe34f4677ab120f44927d6d2c
16 schema:citation sg:pub.10.1007/s00134-012-2695-9
17 sg:pub.10.1007/s10096-019-03800-y
18 sg:pub.10.1038/sj.jp.7210661
19 sg:pub.10.1186/cc10114
20 schema:datePublished 2021-03-10
21 schema:datePublishedReg 2021-03-10
22 schema:description The mortality attributable to ICU-acquired bloodstream infection (BSI) differs between studies due to statistical methods used for cohort matching. Propensity-score matching has never been used to avoid eventual bias when studying BSI attributable mortality in the ICU. We conducted an observational prospective study over a 4-year period, on patients admitted for at least 48 h in 2 intensive care units. Based on risk factors for death in the ICU and for BSI, each patient with BSI was matched with 3 patients without BSI using propensity-score matching. We performed a competitive risk analysis to study BSI mortality attributable fraction. Of 2464 included patients, 71 (2.9%) had a BSI. Propensity-score matching was highly effective and group characteristics were fully balanced. Crude mortality was 36.6% in patients with BSI and 21.6% in propensity-score matched patients (p=0.018). Attributable mortality of BSI was 2.3% [1.2-4.0] and number needed to harm was 6.7. With Fine and Gray model, a higher risk for death was observed in patients with BSI than in propensity-score matched patients (sub distribution Hazard Ratio (sdHR) = 2.11; 95% CI [1.32-3.37] p = 0.002). Patients with BSI had a higher risk for death and BSI attributable mortality fraction was 2.3%.
23 schema:genre article
24 schema:inLanguage en
25 schema:isAccessibleForFree true
26 schema:isPartOf N2363e633d575427685c8a5dc99b4e11a
27 N85bba725e0014861beba73eaca51ea70
28 sg:journal.1093599
29 schema:keywords BSI attributable mortality
30 BSI mortality attributable fraction
31 ICU
32 analysis
33 attributable fraction
34 attributable mortality
35 attributable mortality fraction
36 bias
37 bloodstream infections
38 care unit
39 characteristics
40 cohort matching
41 competitive risk analysis
42 crude mortality
43 death
44 eventual bias
45 factors
46 fines
47 fraction
48 grey model
49 group characteristics
50 high risk
51 infection
52 intensive care unit
53 matching
54 method
55 model
56 mortality
57 mortality attributable fraction
58 mortality fractions
59 number
60 observational prospective study
61 patients
62 period
63 propensity-score matching
64 prospective study
65 risk
66 risk analysis
67 risk factors
68 statistical methods
69 study
70 units
71 schema:name Attributable mortality of ICU acquired bloodstream infections: a propensity-score matched analysis
72 schema:pagination 1-8
73 schema:productId N0ca1e2ae3a1944e2a420def7783d70d8
74 N974df8cb66124cb287b81bd7521df860
75 N9c7908c5e7a24ae68e2eec8770a6505e
76 schema:sameAs https://app.dimensions.ai/details/publication/pub.1136289187
77 https://doi.org/10.1007/s10096-021-04215-4
78 schema:sdDatePublished 2022-01-01T19:02
79 schema:sdLicense https://scigraph.springernature.com/explorer/license/
80 schema:sdPublisher N63b8190cb4984c0bbd339e6e4e0d5c5c
81 schema:url https://doi.org/10.1007/s10096-021-04215-4
82 sgo:license sg:explorer/license/
83 sgo:sdDataset articles
84 rdf:type schema:ScholarlyArticle
85 N0ca1e2ae3a1944e2a420def7783d70d8 schema:name doi
86 schema:value 10.1007/s10096-021-04215-4
87 rdf:type schema:PropertyValue
88 N14282e9e6dea4f428708f8e78ed12d3e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Bacterial Infections
90 rdf:type schema:DefinedTerm
91 N17da7df1ed9d4f0f978befc427477f7b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Female
93 rdf:type schema:DefinedTerm
94 N19d5e1bc698d4bb0848389f6190f949a rdf:first sg:person.015442016537.29
95 rdf:rest Nae61b3b674b2422688e0db0521d08a7b
96 N2363e633d575427685c8a5dc99b4e11a schema:issueNumber 8
97 rdf:type schema:PublicationIssue
98 N45cd80608373424ab3e6645bec2f54a6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Propensity Score
100 rdf:type schema:DefinedTerm
101 N4706be58a63346368cc3d74d0645edb2 rdf:first Nc4c197d1c767496aa02efb1edf119a3d
102 rdf:rest N19d5e1bc698d4bb0848389f6190f949a
103 N57d47a143b564b9093d22c9198f2dc6d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Aged
105 rdf:type schema:DefinedTerm
106 N5c22659fe5014337b1e56ec8b29b927b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Bacteremia
108 rdf:type schema:DefinedTerm
109 N63b8190cb4984c0bbd339e6e4e0d5c5c schema:name Springer Nature - SN SciGraph project
110 rdf:type schema:Organization
111 N654cf28eba6a479c8a7de68c064e6c55 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Cross Infection
113 rdf:type schema:DefinedTerm
114 N6a1c571280f149afa849849212ae0b1e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Humans
116 rdf:type schema:DefinedTerm
117 N83a3fcebe34f4677ab120f44927d6d2c rdf:first sg:person.013251475137.83
118 rdf:rest N4706be58a63346368cc3d74d0645edb2
119 N85bba725e0014861beba73eaca51ea70 schema:volumeNumber 40
120 rdf:type schema:PublicationVolume
121 N974df8cb66124cb287b81bd7521df860 schema:name dimensions_id
122 schema:value pub.1136289187
123 rdf:type schema:PropertyValue
124 N9c7908c5e7a24ae68e2eec8770a6505e schema:name pubmed_id
125 schema:value 33694037
126 rdf:type schema:PropertyValue
127 Na185d93c40f347f09b9df56c84dae209 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Intensive Care Units
129 rdf:type schema:DefinedTerm
130 Nae61b3b674b2422688e0db0521d08a7b rdf:first sg:person.01273730565.40
131 rdf:rest rdf:nil
132 Nb43adb4024834ae794338a6fd5272c0a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Male
134 rdf:type schema:DefinedTerm
135 Nc02dbe9fc39e46948c583254cddce0de schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Risk Factors
137 rdf:type schema:DefinedTerm
138 Nc4c197d1c767496aa02efb1edf119a3d schema:affiliation grid-institutes:None
139 schema:familyName Wattecamps
140 schema:givenName Guilhem
141 rdf:type schema:Person
142 Nfddcdb32854449cdb986e58468c7c5f9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Middle Aged
144 rdf:type schema:DefinedTerm
145 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
146 schema:name Medical and Health Sciences
147 rdf:type schema:DefinedTerm
148 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
149 schema:name Clinical Sciences
150 rdf:type schema:DefinedTerm
151 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
152 schema:name Public Health and Health Services
153 rdf:type schema:DefinedTerm
154 sg:journal.1093599 schema:issn 0934-9723
155 1435-4373
156 schema:name European Journal of Clinical Microbiology & Infectious Diseases
157 schema:publisher Springer Nature
158 rdf:type schema:Periodical
159 sg:person.01273730565.40 schema:affiliation grid-institutes:None
160 schema:familyName Fillatre
161 schema:givenName Pierre
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01273730565.40
163 rdf:type schema:Person
164 sg:person.013251475137.83 schema:affiliation grid-institutes:grid.411154.4
165 schema:familyName Massart
166 schema:givenName Nicolas
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013251475137.83
168 rdf:type schema:Person
169 sg:person.015442016537.29 schema:affiliation grid-institutes:None
170 schema:familyName Moriconi
171 schema:givenName Mikael
172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015442016537.29
173 rdf:type schema:Person
174 sg:pub.10.1007/s00134-012-2695-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002785702
175 https://doi.org/10.1007/s00134-012-2695-9
176 rdf:type schema:CreativeWork
177 sg:pub.10.1007/s10096-019-03800-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1123786767
178 https://doi.org/10.1007/s10096-019-03800-y
179 rdf:type schema:CreativeWork
180 sg:pub.10.1038/sj.jp.7210661 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005004372
181 https://doi.org/10.1038/sj.jp.7210661
182 rdf:type schema:CreativeWork
183 sg:pub.10.1186/cc10114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017211757
184 https://doi.org/10.1186/cc10114
185 rdf:type schema:CreativeWork
186 grid-institutes:None schema:alternateName Service de Réanimation, CH de QUIMPER, 14bis Avenue Yves Thépot, 29107 Quimper, France
187 Service de Réanimation, CH de St BRIEUC, 10, rue Marcel Proust, 22000 Saint-Brieuc, France
188 schema:name Service de Réanimation, CH de QUIMPER, 14bis Avenue Yves Thépot, 29107 Quimper, France
189 Service de Réanimation, CH de St BRIEUC, 10, rue Marcel Proust, 22000 Saint-Brieuc, France
190 rdf:type schema:Organization
191 grid-institutes:grid.411154.4 schema:alternateName Service de maladie infectieuse et de réanimation médicale CHU de rennes, 2, rue Henri le Guilloux, 35000 Rennes, France
192 schema:name Faculté de Médecine, Université Rennes 1, Biosit, F-35043 Rennes, France
193 Service de Réanimation, CH de St BRIEUC, 10, rue Marcel Proust, 22000 Saint-Brieuc, France
194 Service de maladie infectieuse et de réanimation médicale CHU de rennes, 2, rue Henri le Guilloux, 35000 Rennes, France
195 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...