Computation of the signed distance function to a discrete contour on adapted triangulation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-09

AUTHORS

Charles Dapogny, Pascal Frey

ABSTRACT

In this paper, we propose a numerical method for computing the signed distance function to a discrete domain, on an arbitrary triangular background mesh. It mainly relies on the use of some theoretical properties of the unsteady Eikonal equation. Then we present a way of adapting the mesh on which computations are held to enhance the accuracy for both the approximation of the signed distance function and the approximation of the initial discrete contour by the induced piecewise affine reconstruction, which is crucial when using this signed distance function in a context of level set methods. Several examples are presented to assess our analysis, in two or three dimensions. More... »

PAGES

193-219

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10092-011-0051-z

DOI

http://dx.doi.org/10.1007/s10092-011-0051-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1012219733


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Centre de Math\u00e9matiques Appliqu\u00e9es", 
          "id": "https://www.grid.ac/institutes/grid.462265.1", 
          "name": [
            "Centre de Math\u00e9matiques Appliqu\u00e9es (UMR 7641), Ecole Polytechnique, 91128, Palaiseau, France", 
            "Renault DREAM-DTAA, Guyancourt, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dapogny", 
        "givenName": "Charles", 
        "id": "sg:person.07450535161.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07450535161.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sorbonne University", 
          "id": "https://www.grid.ac/institutes/grid.462844.8", 
          "name": [
            "Laboratoire J.-L. Lions, UPMC Univ Paris 06, UMR 7598, 75005, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Frey", 
        "givenName": "Pascal", 
        "id": "sg:person.07530776655.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07530776655.23"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.jcp.2004.10.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012196571"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.crma.2007.10.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019537745"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cma.2004.11.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022492225"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jcph.2001.6910", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023032847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0021-9991(88)90002-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024042944"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-87921-3_11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025066201", 
          "https://doi.org/10.1007/978-3-540-87921-3_11"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-87921-3_11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025066201", 
          "https://doi.org/10.1007/978-3-540-87921-3_11"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jcph.1993.1092", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026664176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jcph.1999.6259", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027516708"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0025-5718-04-01678-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030687531"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01385784", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039630365", 
          "https://doi.org/10.1007/bf01385784"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0045-7930(97)00053-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039660612"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-84882-406-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042313431", 
          "https://doi.org/10.1007/978-1-84882-406-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-84882-406-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042313431", 
          "https://doi.org/10.1007/978-1-84882-406-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-84882-406-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042313431", 
          "https://doi.org/10.1007/978-1-84882-406-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00245-002-0736-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042544438", 
          "https://doi.org/10.1007/s00245-002-0736-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.95.15.8431", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044090143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.93.4.1591", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049906922"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/gmod.2002.0574", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050686881"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/gmod.2002.0574", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050686881"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcp.2007.12.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051215006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jcph.1994.1155", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051436961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0273-0979-1992-00266-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052557297"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-8396(98)00040-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052995487"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcp.2005.07.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053694632"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/proc/2009031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057053070"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/050627083", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062846096"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s0036144598347059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062877998"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s1064827596298245", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062884398"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/vlsm.2001.938900", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095156025"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-09", 
    "datePublishedReg": "2012-09-01", 
    "description": "In this paper, we propose a numerical method for computing the signed distance function to a discrete domain, on an arbitrary triangular background mesh. It mainly relies on the use of some theoretical properties of the unsteady Eikonal equation. Then we present a way of adapting the mesh on which computations are held to enhance the accuracy for both the approximation of the signed distance function and the approximation of the initial discrete contour by the induced piecewise affine reconstruction, which is crucial when using this signed distance function in a context of level set methods. Several examples are presented to assess our analysis, in two or three dimensions.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10092-011-0051-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1135974", 
        "issn": [
          "0008-0624", 
          "1126-5434"
        ], 
        "name": "Calcolo", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "49"
      }
    ], 
    "name": "Computation of the signed distance function to a discrete contour on adapted triangulation", 
    "pagination": "193-219", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3a3817278119ffeb1e247f1f9c8c810760bed7956d017366bd93990414c67dac"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10092-011-0051-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1012219733"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10092-011-0051-z", 
      "https://app.dimensions.ai/details/publication/pub.1012219733"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:46", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000511.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10092-011-0051-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10092-011-0051-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10092-011-0051-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10092-011-0051-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10092-011-0051-z'


 

This table displays all metadata directly associated to this object as RDF triples.

154 TRIPLES      21 PREDICATES      53 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10092-011-0051-z schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author N0f004eb53053421ca104356d621525b9
4 schema:citation sg:pub.10.1007/978-1-84882-406-5
5 sg:pub.10.1007/978-3-540-87921-3_11
6 sg:pub.10.1007/bf01385784
7 sg:pub.10.1007/s00245-002-0736-4
8 https://doi.org/10.1006/gmod.2002.0574
9 https://doi.org/10.1006/jcph.1993.1092
10 https://doi.org/10.1006/jcph.1994.1155
11 https://doi.org/10.1006/jcph.1999.6259
12 https://doi.org/10.1006/jcph.2001.6910
13 https://doi.org/10.1016/0021-9991(88)90002-2
14 https://doi.org/10.1016/j.cma.2004.11.025
15 https://doi.org/10.1016/j.crma.2007.10.008
16 https://doi.org/10.1016/j.jcp.2004.10.024
17 https://doi.org/10.1016/j.jcp.2005.07.006
18 https://doi.org/10.1016/j.jcp.2007.12.018
19 https://doi.org/10.1016/s0045-7930(97)00053-4
20 https://doi.org/10.1016/s0167-8396(98)00040-5
21 https://doi.org/10.1051/proc/2009031
22 https://doi.org/10.1073/pnas.93.4.1591
23 https://doi.org/10.1073/pnas.95.15.8431
24 https://doi.org/10.1090/s0025-5718-04-01678-3
25 https://doi.org/10.1090/s0273-0979-1992-00266-5
26 https://doi.org/10.1109/vlsm.2001.938900
27 https://doi.org/10.1137/050627083
28 https://doi.org/10.1137/s0036144598347059
29 https://doi.org/10.1137/s1064827596298245
30 schema:datePublished 2012-09
31 schema:datePublishedReg 2012-09-01
32 schema:description In this paper, we propose a numerical method for computing the signed distance function to a discrete domain, on an arbitrary triangular background mesh. It mainly relies on the use of some theoretical properties of the unsteady Eikonal equation. Then we present a way of adapting the mesh on which computations are held to enhance the accuracy for both the approximation of the signed distance function and the approximation of the initial discrete contour by the induced piecewise affine reconstruction, which is crucial when using this signed distance function in a context of level set methods. Several examples are presented to assess our analysis, in two or three dimensions.
33 schema:genre research_article
34 schema:inLanguage en
35 schema:isAccessibleForFree false
36 schema:isPartOf N506fd55ee97d4c629fe986a644de2459
37 Nb1d29df4290a4e7082d5597dbe8dbe02
38 sg:journal.1135974
39 schema:name Computation of the signed distance function to a discrete contour on adapted triangulation
40 schema:pagination 193-219
41 schema:productId N277d867bfdaf4a00aa61706fd49d8650
42 N3229f43312eb4a8caf0daa4b70a371b6
43 Na573be00266b4a33bc6448cfd2b0f729
44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012219733
45 https://doi.org/10.1007/s10092-011-0051-z
46 schema:sdDatePublished 2019-04-10T20:46
47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
48 schema:sdPublisher N1b105531d2a14d4bbe0dc2e117d00811
49 schema:url http://link.springer.com/10.1007%2Fs10092-011-0051-z
50 sgo:license sg:explorer/license/
51 sgo:sdDataset articles
52 rdf:type schema:ScholarlyArticle
53 N0f004eb53053421ca104356d621525b9 rdf:first sg:person.07450535161.20
54 rdf:rest N2fca18646a4e4c9f81931a2be57b7882
55 N1b105531d2a14d4bbe0dc2e117d00811 schema:name Springer Nature - SN SciGraph project
56 rdf:type schema:Organization
57 N277d867bfdaf4a00aa61706fd49d8650 schema:name dimensions_id
58 schema:value pub.1012219733
59 rdf:type schema:PropertyValue
60 N2fca18646a4e4c9f81931a2be57b7882 rdf:first sg:person.07530776655.23
61 rdf:rest rdf:nil
62 N3229f43312eb4a8caf0daa4b70a371b6 schema:name readcube_id
63 schema:value 3a3817278119ffeb1e247f1f9c8c810760bed7956d017366bd93990414c67dac
64 rdf:type schema:PropertyValue
65 N506fd55ee97d4c629fe986a644de2459 schema:volumeNumber 49
66 rdf:type schema:PublicationVolume
67 Na573be00266b4a33bc6448cfd2b0f729 schema:name doi
68 schema:value 10.1007/s10092-011-0051-z
69 rdf:type schema:PropertyValue
70 Nb1d29df4290a4e7082d5597dbe8dbe02 schema:issueNumber 3
71 rdf:type schema:PublicationIssue
72 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
73 schema:name Information and Computing Sciences
74 rdf:type schema:DefinedTerm
75 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
76 schema:name Information Systems
77 rdf:type schema:DefinedTerm
78 sg:journal.1135974 schema:issn 0008-0624
79 1126-5434
80 schema:name Calcolo
81 rdf:type schema:Periodical
82 sg:person.07450535161.20 schema:affiliation https://www.grid.ac/institutes/grid.462265.1
83 schema:familyName Dapogny
84 schema:givenName Charles
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07450535161.20
86 rdf:type schema:Person
87 sg:person.07530776655.23 schema:affiliation https://www.grid.ac/institutes/grid.462844.8
88 schema:familyName Frey
89 schema:givenName Pascal
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07530776655.23
91 rdf:type schema:Person
92 sg:pub.10.1007/978-1-84882-406-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042313431
93 https://doi.org/10.1007/978-1-84882-406-5
94 rdf:type schema:CreativeWork
95 sg:pub.10.1007/978-3-540-87921-3_11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025066201
96 https://doi.org/10.1007/978-3-540-87921-3_11
97 rdf:type schema:CreativeWork
98 sg:pub.10.1007/bf01385784 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039630365
99 https://doi.org/10.1007/bf01385784
100 rdf:type schema:CreativeWork
101 sg:pub.10.1007/s00245-002-0736-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042544438
102 https://doi.org/10.1007/s00245-002-0736-4
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1006/gmod.2002.0574 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050686881
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1006/jcph.1993.1092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026664176
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1006/jcph.1994.1155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051436961
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1006/jcph.1999.6259 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027516708
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1006/jcph.2001.6910 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023032847
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/0021-9991(88)90002-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024042944
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/j.cma.2004.11.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022492225
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.crma.2007.10.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019537745
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.jcp.2004.10.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012196571
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.jcp.2005.07.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053694632
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.jcp.2007.12.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051215006
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/s0045-7930(97)00053-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039660612
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/s0167-8396(98)00040-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052995487
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1051/proc/2009031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057053070
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1073/pnas.93.4.1591 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049906922
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1073/pnas.95.15.8431 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044090143
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1090/s0025-5718-04-01678-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030687531
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1090/s0273-0979-1992-00266-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052557297
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1109/vlsm.2001.938900 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095156025
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1137/050627083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062846096
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1137/s0036144598347059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062877998
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1137/s1064827596298245 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062884398
147 rdf:type schema:CreativeWork
148 https://www.grid.ac/institutes/grid.462265.1 schema:alternateName Centre de Mathématiques Appliquées
149 schema:name Centre de Mathématiques Appliquées (UMR 7641), Ecole Polytechnique, 91128, Palaiseau, France
150 Renault DREAM-DTAA, Guyancourt, France
151 rdf:type schema:Organization
152 https://www.grid.ac/institutes/grid.462844.8 schema:alternateName Sorbonne University
153 schema:name Laboratoire J.-L. Lions, UPMC Univ Paris 06, UMR 7598, 75005, Paris, France
154 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...