Predicting moisture content and density distribution of Scots pine by microwave scanning of sawn timber View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2003-08

AUTHORS

Jan Johansson, Olle Hagman, Bengt-Arne Fjellner

ABSTRACT

This study was carried out to investigate the possibility of calibrating a prediction model for the moisture content and density distribution of Scots pine (Pinus sylvestris) using microwave sensors. The material was initially of green moisture content and was thereafter dried in several steps to zero moisture content. At each step, all the pieces were weighed, scanned with a microwave sensor (Satimo 9,4 GHz), and computed tomography (CT)-scanned with a medical CT scanner (Siemens Somatom AR.T.). The output variables from the microwave sensor were used as predictors, and CT images that correlated with known moisture content were used as response variables. Multivariate models to predict average moisture content and density were calibrated using the partial least squares (PLS) regression. The models for average moisture content and density were applied at the pixel level, and the distribution was visualized. The results show that it is possible to predict both moisture content distribution and density distribution with high accuracy using microwave sensors. More... »

PAGES

312-316

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10086-002-0493-7

DOI

http://dx.doi.org/10.1007/s10086-002-0493-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1024514808


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1005", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Communications Technologies", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Technology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Lule\u00e5 University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.6926.b", 
          "name": [
            "Division of Wood Technology, Lule\u00c5 University of Technology, Skellefte\u00c5 Campus, Skeria 3, 931 87, Skellefte\u00c5, S, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Johansson", 
        "givenName": "Jan", 
        "id": "sg:person.012112005221.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012112005221.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lule\u00e5 University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.6926.b", 
          "name": [
            "Division of Wood Technology, Lule\u00c5 University of Technology, Skellefte\u00c5 Campus, Skeria 3, 931 87, Skellefte\u00c5, S, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hagman", 
        "givenName": "Olle", 
        "id": "sg:person.012123644237.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012123644237.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lule\u00e5 University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.6926.b", 
          "name": [
            "Division of Wood Technology, Lule\u00c5 University of Technology, Skellefte\u00c5 Campus, Skeria 3, 931 87, Skellefte\u00c5, S, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fjellner", 
        "givenName": "Bengt-Arne", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-94-017-1026-8_5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000847385", 
          "https://doi.org/10.1007/978-94-017-1026-8_5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0169-7439(98)00109-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022973607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-77453-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036561164", 
          "https://doi.org/10.1007/978-3-642-77453-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-77453-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036561164", 
          "https://doi.org/10.1007/978-3-642-77453-9"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2003-08", 
    "datePublishedReg": "2003-08-01", 
    "description": "This study was carried out to investigate the possibility of calibrating a prediction model for the moisture content and density distribution of Scots pine (Pinus sylvestris) using microwave sensors. The material was initially of green moisture content and was thereafter dried in several steps to zero moisture content. At each step, all the pieces were weighed, scanned with a microwave sensor (Satimo 9,4 GHz), and computed tomography (CT)-scanned with a medical CT scanner (Siemens Somatom AR.T.). The output variables from the microwave sensor were used as predictors, and CT images that correlated with known moisture content were used as response variables. Multivariate models to predict average moisture content and density were calibrated using the partial least squares (PLS) regression. The models for average moisture content and density were applied at the pixel level, and the distribution was visualized. The results show that it is possible to predict both moisture content distribution and density distribution with high accuracy using microwave sensors.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10086-002-0493-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136556", 
        "issn": [
          "1435-0211", 
          "1611-4663"
        ], 
        "name": "Journal of Wood Science", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "49"
      }
    ], 
    "name": "Predicting moisture content and density distribution of Scots pine by microwave scanning of sawn timber", 
    "pagination": "312-316", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "74ca23fe9b6e3e1576269a7de0adbe58f800f1c568c63d553317eca6280600ce"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10086-002-0493-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1024514808"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10086-002-0493-7", 
      "https://app.dimensions.ai/details/publication/pub.1024514808"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000353_0000000353/records_45376_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10086-002-0493-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10086-002-0493-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10086-002-0493-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10086-002-0493-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10086-002-0493-7'


 

This table displays all metadata directly associated to this object as RDF triples.

85 TRIPLES      21 PREDICATES      30 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10086-002-0493-7 schema:about anzsrc-for:10
2 anzsrc-for:1005
3 schema:author N32a455d316a945ba95e94cb68c3414ef
4 schema:citation sg:pub.10.1007/978-3-642-77453-9
5 sg:pub.10.1007/978-94-017-1026-8_5
6 https://doi.org/10.1016/s0169-7439(98)00109-9
7 schema:datePublished 2003-08
8 schema:datePublishedReg 2003-08-01
9 schema:description This study was carried out to investigate the possibility of calibrating a prediction model for the moisture content and density distribution of Scots pine (Pinus sylvestris) using microwave sensors. The material was initially of green moisture content and was thereafter dried in several steps to zero moisture content. At each step, all the pieces were weighed, scanned with a microwave sensor (Satimo 9,4 GHz), and computed tomography (CT)-scanned with a medical CT scanner (Siemens Somatom AR.T.). The output variables from the microwave sensor were used as predictors, and CT images that correlated with known moisture content were used as response variables. Multivariate models to predict average moisture content and density were calibrated using the partial least squares (PLS) regression. The models for average moisture content and density were applied at the pixel level, and the distribution was visualized. The results show that it is possible to predict both moisture content distribution and density distribution with high accuracy using microwave sensors.
10 schema:genre research_article
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf N70d367c460e942b48e1ebde44428111f
14 Nba76f09174aa49d4917327c95b4607d7
15 sg:journal.1136556
16 schema:name Predicting moisture content and density distribution of Scots pine by microwave scanning of sawn timber
17 schema:pagination 312-316
18 schema:productId N5f60a68187784013a60f2e33efc667ce
19 N916e0d1f7b5043c59b4ce993dfec9dbc
20 Na8631dc8c68b466fb0a4deea71149c7e
21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024514808
22 https://doi.org/10.1007/s10086-002-0493-7
23 schema:sdDatePublished 2019-04-11T11:14
24 schema:sdLicense https://scigraph.springernature.com/explorer/license/
25 schema:sdPublisher N2328eb2685bd46b2b3ee2313adea3531
26 schema:url http://link.springer.com/10.1007%2Fs10086-002-0493-7
27 sgo:license sg:explorer/license/
28 sgo:sdDataset articles
29 rdf:type schema:ScholarlyArticle
30 N2328eb2685bd46b2b3ee2313adea3531 schema:name Springer Nature - SN SciGraph project
31 rdf:type schema:Organization
32 N32a455d316a945ba95e94cb68c3414ef rdf:first sg:person.012112005221.03
33 rdf:rest Nb059d9885f2e4d5da447a37feb0981b2
34 N3ac6750a95f545cbbfcd8338d46f6c21 schema:affiliation https://www.grid.ac/institutes/grid.6926.b
35 schema:familyName Fjellner
36 schema:givenName Bengt-Arne
37 rdf:type schema:Person
38 N5f60a68187784013a60f2e33efc667ce schema:name dimensions_id
39 schema:value pub.1024514808
40 rdf:type schema:PropertyValue
41 N70d367c460e942b48e1ebde44428111f schema:issueNumber 4
42 rdf:type schema:PublicationIssue
43 N7dcd8a048bd9423fb4de2d8bda853654 rdf:first N3ac6750a95f545cbbfcd8338d46f6c21
44 rdf:rest rdf:nil
45 N916e0d1f7b5043c59b4ce993dfec9dbc schema:name readcube_id
46 schema:value 74ca23fe9b6e3e1576269a7de0adbe58f800f1c568c63d553317eca6280600ce
47 rdf:type schema:PropertyValue
48 Na8631dc8c68b466fb0a4deea71149c7e schema:name doi
49 schema:value 10.1007/s10086-002-0493-7
50 rdf:type schema:PropertyValue
51 Nb059d9885f2e4d5da447a37feb0981b2 rdf:first sg:person.012123644237.27
52 rdf:rest N7dcd8a048bd9423fb4de2d8bda853654
53 Nba76f09174aa49d4917327c95b4607d7 schema:volumeNumber 49
54 rdf:type schema:PublicationVolume
55 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
56 schema:name Technology
57 rdf:type schema:DefinedTerm
58 anzsrc-for:1005 schema:inDefinedTermSet anzsrc-for:
59 schema:name Communications Technologies
60 rdf:type schema:DefinedTerm
61 sg:journal.1136556 schema:issn 1435-0211
62 1611-4663
63 schema:name Journal of Wood Science
64 rdf:type schema:Periodical
65 sg:person.012112005221.03 schema:affiliation https://www.grid.ac/institutes/grid.6926.b
66 schema:familyName Johansson
67 schema:givenName Jan
68 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012112005221.03
69 rdf:type schema:Person
70 sg:person.012123644237.27 schema:affiliation https://www.grid.ac/institutes/grid.6926.b
71 schema:familyName Hagman
72 schema:givenName Olle
73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012123644237.27
74 rdf:type schema:Person
75 sg:pub.10.1007/978-3-642-77453-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036561164
76 https://doi.org/10.1007/978-3-642-77453-9
77 rdf:type schema:CreativeWork
78 sg:pub.10.1007/978-94-017-1026-8_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000847385
79 https://doi.org/10.1007/978-94-017-1026-8_5
80 rdf:type schema:CreativeWork
81 https://doi.org/10.1016/s0169-7439(98)00109-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022973607
82 rdf:type schema:CreativeWork
83 https://www.grid.ac/institutes/grid.6926.b schema:alternateName Luleå University of Technology
84 schema:name Division of Wood Technology, LuleÅ University of Technology, SkellefteÅ Campus, Skeria 3, 931 87, SkellefteÅ, S, Sweden
85 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...