Characterization of microbial community composition and pathogens risk assessment in typical Italian-style salami by high-throughput sequencing technology View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-09-21

AUTHORS

Xinhui Wang, Hongyang Ren, Yi Zhan

ABSTRACT

The structure of microbial communities in a typical Italian-style salami, including bacterial and fungal diversity, was investigated by high-throughput sequencing technology. A total of 6 phyla, 7 classes, 19 orders, 20 families and 28 genera were obtained from 16S rDNA sequences, and a total of 2 phyla, 4 classes, 4 orders, 5 families, 10 genera and 12 Species were obtained from 18S rDNA sequences. The core microbiota was composed of Staphylococcaceae, representing up to 97.52% of the total 16S rRNA, and Penicillium digitatum, accounting for 99.74% of the total classified 18S rRNA. Lactobacillales and Saccharomycetales were detected with a quite low proportion of 1.71 and 0.007%, respectively. This study contributes to the knowledge of the microbial diversity involved in salami and presents high-throughput sequencing as a useful tool to evaluate microbial diversity and monitor the food-borne pathogens in fermented sausage. More... »

PAGES

241-249

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10068-017-0200-5

DOI

http://dx.doi.org/10.1007/s10068-017-0200-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1091888620

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30263746


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Technology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0908", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Food Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1001", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Agricultural Biotechnology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Meat-processing Application Key Laboratory of Sichuan Province, College of Pharmacy and Biological Engineering, Chengdu University, 610106, Chengdu, China", 
          "id": "http://www.grid.ac/institutes/grid.411292.d", 
          "name": [
            "Meat-processing Application Key Laboratory of Sichuan Province, College of Pharmacy and Biological Engineering, Chengdu University, 610106, Chengdu, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Xinhui", 
        "id": "sg:person.01275041004.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01275041004.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Chemistry and Chemical Engineering, Southwest Petroleum University, 610500, Chengdu, China", 
          "id": "http://www.grid.ac/institutes/grid.437806.e", 
          "name": [
            "School of Chemistry and Chemical Engineering, Southwest Petroleum University, 610500, Chengdu, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ren", 
        "givenName": "Hongyang", 
        "id": "sg:person.01343154204.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01343154204.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "College of Tourism and Economics Management, Chengdu University, 610106, Chengdu, China", 
          "id": "http://www.grid.ac/institutes/grid.411292.d", 
          "name": [
            "College of Tourism and Economics Management, Chengdu University, 610106, Chengdu, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhan", 
        "givenName": "Yi", 
        "id": "sg:person.012535703636.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012535703636.97"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nmeth.f.303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009032055", 
          "https://doi.org/10.1038/nmeth.f.303"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00122-010-1482-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007874872", 
          "https://doi.org/10.1007/s00122-010-1482-7"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-09-21", 
    "datePublishedReg": "2017-09-21", 
    "description": "The structure of microbial communities in a typical Italian-style salami, including bacterial and fungal diversity, was investigated by high-throughput sequencing technology. A total of 6 phyla, 7 classes, 19 orders, 20 families and 28 genera were obtained from 16S rDNA sequences, and a total of 2 phyla, 4 classes, 4 orders, 5 families, 10\u00a0genera and 12 Species were obtained from 18S rDNA sequences. The core microbiota was composed of Staphylococcaceae, representing up to 97.52% of the total 16S rRNA, and Penicillium digitatum, accounting for 99.74% of the total classified 18S rRNA. Lactobacillales and Saccharomycetales were detected with a quite low proportion of 1.71 and 0.007%, respectively. This study contributes to the knowledge of the microbial diversity involved in salami and presents high-throughput sequencing as a useful tool to evaluate microbial diversity and monitor the food-borne pathogens in fermented sausage.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10068-017-0200-5", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1119788", 
        "issn": [
          "1226-7708", 
          "2092-6456"
        ], 
        "name": "Food Science and Biotechnology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "27"
      }
    ], 
    "keywords": [
      "high-throughput sequencing technology", 
      "microbial diversity", 
      "rDNA sequences", 
      "sequencing technologies", 
      "microbial community composition", 
      "high-throughput sequencing", 
      "fungal diversity", 
      "community composition", 
      "microbial communities", 
      "core microbiota", 
      "phyla", 
      "food-borne pathogens", 
      "diversity", 
      "rRNA", 
      "genus", 
      "Penicillium digitatum", 
      "sequence", 
      "Saccharomycetales", 
      "family", 
      "species", 
      "sequencing", 
      "Lactobacillales", 
      "Staphylococcaceae", 
      "pathogens", 
      "microbiota", 
      "lower proportion", 
      "digitatum", 
      "useful tool", 
      "characterization", 
      "community", 
      "composition", 
      "class", 
      "risk assessment", 
      "structure", 
      "proportion", 
      "total", 
      "knowledge", 
      "tool", 
      "salami", 
      "study", 
      "order", 
      "sausages", 
      "technology", 
      "assessment"
    ], 
    "name": "Characterization of microbial community composition and pathogens risk assessment in typical Italian-style salami by high-throughput sequencing technology", 
    "pagination": "241-249", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1091888620"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10068-017-0200-5"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30263746"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10068-017-0200-5", 
      "https://app.dimensions.ai/details/publication/pub.1091888620"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-08-04T17:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_737.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10068-017-0200-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10068-017-0200-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10068-017-0200-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10068-017-0200-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10068-017-0200-5'


 

This table displays all metadata directly associated to this object as RDF triples.

140 TRIPLES      21 PREDICATES      73 URIs      61 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10068-017-0200-5 schema:about anzsrc-for:09
2 anzsrc-for:0908
3 anzsrc-for:10
4 anzsrc-for:1001
5 schema:author N015364a73d3b473a9bd671833ce62cff
6 schema:citation sg:pub.10.1007/s00122-010-1482-7
7 sg:pub.10.1038/nmeth.f.303
8 schema:datePublished 2017-09-21
9 schema:datePublishedReg 2017-09-21
10 schema:description The structure of microbial communities in a typical Italian-style salami, including bacterial and fungal diversity, was investigated by high-throughput sequencing technology. A total of 6 phyla, 7 classes, 19 orders, 20 families and 28 genera were obtained from 16S rDNA sequences, and a total of 2 phyla, 4 classes, 4 orders, 5 families, 10 genera and 12 Species were obtained from 18S rDNA sequences. The core microbiota was composed of Staphylococcaceae, representing up to 97.52% of the total 16S rRNA, and Penicillium digitatum, accounting for 99.74% of the total classified 18S rRNA. Lactobacillales and Saccharomycetales were detected with a quite low proportion of 1.71 and 0.007%, respectively. This study contributes to the knowledge of the microbial diversity involved in salami and presents high-throughput sequencing as a useful tool to evaluate microbial diversity and monitor the food-borne pathogens in fermented sausage.
11 schema:genre article
12 schema:isAccessibleForFree true
13 schema:isPartOf N6b5c7c6db3b5490aa1913fe3d1c6b0d2
14 Nc55cf3a0ec37417681d5efe97e3d7c3c
15 sg:journal.1119788
16 schema:keywords Lactobacillales
17 Penicillium digitatum
18 Saccharomycetales
19 Staphylococcaceae
20 assessment
21 characterization
22 class
23 community
24 community composition
25 composition
26 core microbiota
27 digitatum
28 diversity
29 family
30 food-borne pathogens
31 fungal diversity
32 genus
33 high-throughput sequencing
34 high-throughput sequencing technology
35 knowledge
36 lower proportion
37 microbial communities
38 microbial community composition
39 microbial diversity
40 microbiota
41 order
42 pathogens
43 phyla
44 proportion
45 rDNA sequences
46 rRNA
47 risk assessment
48 salami
49 sausages
50 sequence
51 sequencing
52 sequencing technologies
53 species
54 structure
55 study
56 technology
57 tool
58 total
59 useful tool
60 schema:name Characterization of microbial community composition and pathogens risk assessment in typical Italian-style salami by high-throughput sequencing technology
61 schema:pagination 241-249
62 schema:productId N0637cb6a10ed4eecb00529dee45dbc85
63 Nbd61c0a32f044c8ea59a1cbd73e839d2
64 Nc8243603cdee4531bdd4c215d26f6b1b
65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091888620
66 https://doi.org/10.1007/s10068-017-0200-5
67 schema:sdDatePublished 2022-08-04T17:06
68 schema:sdLicense https://scigraph.springernature.com/explorer/license/
69 schema:sdPublisher Nf43a4ede36014216932a950ee43a533b
70 schema:url https://doi.org/10.1007/s10068-017-0200-5
71 sgo:license sg:explorer/license/
72 sgo:sdDataset articles
73 rdf:type schema:ScholarlyArticle
74 N015364a73d3b473a9bd671833ce62cff rdf:first sg:person.01275041004.32
75 rdf:rest Ne357debf2a4b4d13a40adfb761d2c583
76 N0637cb6a10ed4eecb00529dee45dbc85 schema:name pubmed_id
77 schema:value 30263746
78 rdf:type schema:PropertyValue
79 N6b5c7c6db3b5490aa1913fe3d1c6b0d2 schema:issueNumber 1
80 rdf:type schema:PublicationIssue
81 N797832ff8f2b4160aafd5019b1ff8f46 rdf:first sg:person.012535703636.97
82 rdf:rest rdf:nil
83 Nbd61c0a32f044c8ea59a1cbd73e839d2 schema:name dimensions_id
84 schema:value pub.1091888620
85 rdf:type schema:PropertyValue
86 Nc55cf3a0ec37417681d5efe97e3d7c3c schema:volumeNumber 27
87 rdf:type schema:PublicationVolume
88 Nc8243603cdee4531bdd4c215d26f6b1b schema:name doi
89 schema:value 10.1007/s10068-017-0200-5
90 rdf:type schema:PropertyValue
91 Ne357debf2a4b4d13a40adfb761d2c583 rdf:first sg:person.01343154204.56
92 rdf:rest N797832ff8f2b4160aafd5019b1ff8f46
93 Nf43a4ede36014216932a950ee43a533b schema:name Springer Nature - SN SciGraph project
94 rdf:type schema:Organization
95 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
96 schema:name Engineering
97 rdf:type schema:DefinedTerm
98 anzsrc-for:0908 schema:inDefinedTermSet anzsrc-for:
99 schema:name Food Sciences
100 rdf:type schema:DefinedTerm
101 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
102 schema:name Technology
103 rdf:type schema:DefinedTerm
104 anzsrc-for:1001 schema:inDefinedTermSet anzsrc-for:
105 schema:name Agricultural Biotechnology
106 rdf:type schema:DefinedTerm
107 sg:journal.1119788 schema:issn 1226-7708
108 2092-6456
109 schema:name Food Science and Biotechnology
110 schema:publisher Springer Nature
111 rdf:type schema:Periodical
112 sg:person.012535703636.97 schema:affiliation grid-institutes:grid.411292.d
113 schema:familyName Zhan
114 schema:givenName Yi
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012535703636.97
116 rdf:type schema:Person
117 sg:person.01275041004.32 schema:affiliation grid-institutes:grid.411292.d
118 schema:familyName Wang
119 schema:givenName Xinhui
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01275041004.32
121 rdf:type schema:Person
122 sg:person.01343154204.56 schema:affiliation grid-institutes:grid.437806.e
123 schema:familyName Ren
124 schema:givenName Hongyang
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01343154204.56
126 rdf:type schema:Person
127 sg:pub.10.1007/s00122-010-1482-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007874872
128 https://doi.org/10.1007/s00122-010-1482-7
129 rdf:type schema:CreativeWork
130 sg:pub.10.1038/nmeth.f.303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009032055
131 https://doi.org/10.1038/nmeth.f.303
132 rdf:type schema:CreativeWork
133 grid-institutes:grid.411292.d schema:alternateName College of Tourism and Economics Management, Chengdu University, 610106, Chengdu, China
134 Meat-processing Application Key Laboratory of Sichuan Province, College of Pharmacy and Biological Engineering, Chengdu University, 610106, Chengdu, China
135 schema:name College of Tourism and Economics Management, Chengdu University, 610106, Chengdu, China
136 Meat-processing Application Key Laboratory of Sichuan Province, College of Pharmacy and Biological Engineering, Chengdu University, 610106, Chengdu, China
137 rdf:type schema:Organization
138 grid-institutes:grid.437806.e schema:alternateName School of Chemistry and Chemical Engineering, Southwest Petroleum University, 610500, Chengdu, China
139 schema:name School of Chemistry and Chemical Engineering, Southwest Petroleum University, 610500, Chengdu, China
140 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...