Quantitative measurement of cartilage volume with automatic cartilage segmentation in knee osteoarthritis View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2020-10-07

AUTHORS

Wenjing Hou, Jun Zhao, Rui He, Jing Li, Yuan Ou, Mingshan Du, Xuanqi Xiong, Bing Xie, Lian Li, Xiaoyue Zhou, Panli Zuo, Esther Raithel, Zhuoli Zhang, Wei Chen

ABSTRACT

PurposeTo determine the reproducibility of the automatic cartilage segmentation method using a prototype KneeCaP software (version 1.3; Siemens Healthcare, Erlangen, Germany) and to compare the difference in cartilage volume (CV) between the normal knee joint and knee osteoarthritis (KOA) of different degrees by using the above software.Materials and methodsThe study included 62 subjects with knee OA and 29 healthy control subjects. The cartilage lesion patients were divided into a mild-to-moderate OA group (n = 29) and severe OA group (n = 33). Automatic cartilage segmentation was performed on all the subjects, and among them, 19 knee cases were randomly selected to also do the manual cartilage segmentation. Statistical significance was determined with one-way analysis of variance (ANOVA), intraclass correlation coefficient (ICC), and Pearson correlation coefficient. Automatic segmentation was compared with the manual one. The relative cartilage volume percentages of the femur, tibia, and patella in the normal control/mild-to-moderate/severe OA groups were assessed.ResultsComparing the cartilage volumes derived by manual and automatic segmentation, the ICC value for the knee joint, patella, femur, or tibia was 0.784, 0.815, 0.740, and 0.797. The relative cartilage volume percentages of the femur, tibia, and patella in the normal control/mild-to-moderate/severe OA groups were 57.28%/59.30%/62.45% (femur), 25.35%/23.46%/21.84% (tibia), and 17.37%/17.24%/15.71% (patella), respectively. Compared with the normal control group, the relative tibia cartilage volume percentage was lower in the mild-to-moderate OA group and the severe OA group. Corresponding index showed a similar difference between the mild-to-moderate OA group and the severe OA group (p < 0.001).ConclusionThis study demonstrated that the relative cartilage volume percentage is correlated with the semi-quantitative systems and may be a preferred outcome measure in clinical studies of OA. Automatic cartilage segmentation using KneeCaP delivered reliable results on high-spatial-resolution 3 T MR images for the healthy, mild-moderate OA patients.Key Points• The cartilage automatic segmentation has excellent reproducibility and was not affected by inter-observer variation.• The relative cartilage volume percentage is correlated with the semi-quantitative systems and may be a preferred outcome measure in clinical studies of OA. More... »

PAGES

1997-2006

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10067-020-05388-7

DOI

http://dx.doi.org/10.1007/s10067-020-05388-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1131477338

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/33026551


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cartilage, Articular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Germany", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Knee Joint", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Osteoarthritis, Knee", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tibia", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Gaotanyan 30, Shapingba, 400038, Chongqing, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.416208.9", 
          "name": [
            "Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Gaotanyan 30, Shapingba, 400038, Chongqing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hou", 
        "givenName": "Wenjing", 
        "id": "sg:person.011374642103.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011374642103.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Gaotanyan 30, Shapingba, 400038, Chongqing, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.416208.9", 
          "name": [
            "Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Gaotanyan 30, Shapingba, 400038, Chongqing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhao", 
        "givenName": "Jun", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Centre of Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), 400038, Chongqing, China", 
          "id": "http://www.grid.ac/institutes/grid.416208.9", 
          "name": [
            "Centre of Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), 400038, Chongqing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "He", 
        "givenName": "Rui", 
        "id": "sg:person.01351450411.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01351450411.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Gaotanyan 30, Shapingba, 400038, Chongqing, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.416208.9", 
          "name": [
            "Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Gaotanyan 30, Shapingba, 400038, Chongqing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Jing", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Gaotanyan 30, Shapingba, 400038, Chongqing, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.416208.9", 
          "name": [
            "Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Gaotanyan 30, Shapingba, 400038, Chongqing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ou", 
        "givenName": "Yuan", 
        "id": "sg:person.013242307700.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013242307700.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Gaotanyan 30, Shapingba, 400038, Chongqing, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.416208.9", 
          "name": [
            "Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Gaotanyan 30, Shapingba, 400038, Chongqing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Du", 
        "givenName": "Mingshan", 
        "id": "sg:person.012172222503.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012172222503.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Gaotanyan 30, Shapingba, 400038, Chongqing, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.416208.9", 
          "name": [
            "Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Gaotanyan 30, Shapingba, 400038, Chongqing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xiong", 
        "givenName": "Xuanqi", 
        "id": "sg:person.013271062504.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013271062504.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Gaotanyan 30, Shapingba, 400038, Chongqing, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.416208.9", 
          "name": [
            "Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Gaotanyan 30, Shapingba, 400038, Chongqing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xie", 
        "givenName": "Bing", 
        "id": "sg:person.01323676220.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01323676220.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Gaotanyan 30, Shapingba, 400038, Chongqing, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.416208.9", 
          "name": [
            "Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Gaotanyan 30, Shapingba, 400038, Chongqing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Lian", 
        "id": "sg:person.011061400755.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011061400755.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "MR Collaboration NEA, Siemens Healthcare Ltd., 201318, Shanghai, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "MR Collaboration NEA, Siemens Healthcare Ltd., 201318, Shanghai, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhou", 
        "givenName": "Xiaoyue", 
        "id": "sg:person.016516265470.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016516265470.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "MR Collaboration NEA, Siemens Healthcare Ltd., 201318, Shanghai, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "MR Collaboration NEA, Siemens Healthcare Ltd., 201318, Shanghai, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zuo", 
        "givenName": "Panli", 
        "id": "sg:person.01346614027.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01346614027.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Siemens Healthcare GmbH, Erlangen, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5406.7", 
          "name": [
            "Siemens Healthcare GmbH, Erlangen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Raithel", 
        "givenName": "Esther", 
        "id": "sg:person.0732615321.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0732615321.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA", 
          "id": "http://www.grid.ac/institutes/grid.16753.36", 
          "name": [
            "Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Zhuoli", 
        "id": "sg:person.013232656557.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013232656557.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Gaotanyan 30, Shapingba, 400038, Chongqing, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.416208.9", 
          "name": [
            "Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Gaotanyan 30, Shapingba, 400038, Chongqing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Wei", 
        "id": "sg:person.011500761603.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011500761603.87"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/s12891-019-2624-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1115023238", 
          "https://doi.org/10.1186/s12891-019-2624-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00776-005-0889-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001114358", 
          "https://doi.org/10.1007/s00776-005-0889-5"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2020-10-07", 
    "datePublishedReg": "2020-10-07", 
    "description": "PurposeTo determine the reproducibility of the automatic cartilage segmentation method using a prototype KneeCaP software (version 1.3; Siemens Healthcare, Erlangen, Germany) and to compare the difference in cartilage volume (CV) between the normal knee joint and knee osteoarthritis (KOA) of different degrees by using the above software.Materials and methodsThe study included 62 subjects with knee OA and 29 healthy control subjects. The cartilage lesion patients were divided into a mild-to-moderate OA group (n = 29) and severe OA group (n = 33). Automatic cartilage segmentation was performed on all the subjects, and among them, 19 knee cases were randomly selected to also do the manual cartilage segmentation. Statistical significance was determined with one-way analysis of variance (ANOVA), intraclass correlation coefficient (ICC), and Pearson correlation coefficient. Automatic segmentation was compared with the manual one. The relative cartilage volume percentages of the femur, tibia, and patella in the normal control/mild-to-moderate/severe OA groups were assessed.ResultsComparing the cartilage volumes derived by manual and automatic segmentation, the ICC value for the knee joint, patella, femur, or tibia was 0.784, 0.815, 0.740, and 0.797. The relative cartilage volume percentages of the femur, tibia, and patella in the normal control/mild-to-moderate/severe OA groups were 57.28%/59.30%/62.45% (femur), 25.35%/23.46%/21.84% (tibia), and 17.37%/17.24%/15.71% (patella), respectively. Compared with the normal control group, the relative tibia cartilage volume percentage was lower in the mild-to-moderate OA group and the severe OA group. Corresponding index showed a similar difference between the mild-to-moderate OA group and the severe OA group (p < 0.001).ConclusionThis study demonstrated that the relative cartilage volume percentage is correlated with the semi-quantitative systems and may be a preferred outcome measure in clinical studies of OA. Automatic cartilage segmentation using KneeCaP delivered reliable results on high-spatial-resolution 3 T MR images for the healthy, mild-moderate OA patients.Key Points\u2022 The cartilage automatic segmentation has excellent reproducibility and was not affected by inter-observer variation.\u2022 The relative cartilage volume percentage is correlated with the semi-quantitative systems and may be a preferred outcome measure in clinical studies of OA.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10067-020-05388-7", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1093299", 
        "issn": [
          "0770-3198", 
          "1434-9949"
        ], 
        "name": "Clinical Rheumatology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "40"
      }
    ], 
    "keywords": [
      "severe OA group", 
      "moderate OA group", 
      "OA group", 
      "preferred outcome measure", 
      "knee osteoarthritis", 
      "cartilage volume", 
      "semi-quantitative system", 
      "intraclass correlation coefficient", 
      "clinical studies", 
      "outcome measures", 
      "knee joint", 
      "healthy control subjects", 
      "normal control group", 
      "normal knee joints", 
      "OA patients", 
      "knee OA", 
      "control subjects", 
      "knee cases", 
      "MethodsThe study", 
      "control group", 
      "ConclusionThis study", 
      "lesion patients", 
      "inter-observer variation", 
      "mild", 
      "one-way analysis", 
      "statistical significance", 
      "patella", 
      "ICC values", 
      "tibia", 
      "Pearson correlation coefficient", 
      "femur", 
      "patients", 
      "osteoarthritis", 
      "Similar differences", 
      "OA", 
      "manual cartilage segmentation", 
      "subjects", 
      "correlation coefficient", 
      "MR images", 
      "group", 
      "T MR images", 
      "percentage", 
      "PurposeTo", 
      "automatic cartilage segmentation", 
      "study", 
      "cartilage segmentation", 
      "joints", 
      "differences", 
      "volume", 
      "measures", 
      "kneecap", 
      "quantitative measurements", 
      "index", 
      "different degrees", 
      "cartilage segmentation method", 
      "reproducibility", 
      "cases", 
      "significance", 
      "volume percentage", 
      "excellent reproducibility", 
      "corresponding indices", 
      "manual one", 
      "degree", 
      "automatic segmentation", 
      "analysis", 
      "variance", 
      "results", 
      "reliable results", 
      "values", 
      "system", 
      "method", 
      "measurements", 
      "software", 
      "materials", 
      "variation", 
      "images", 
      "one", 
      "coefficient", 
      "segmentation", 
      "segmentation method", 
      "above software"
    ], 
    "name": "Quantitative measurement of cartilage volume with automatic cartilage segmentation in knee osteoarthritis", 
    "pagination": "1997-2006", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1131477338"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10067-020-05388-7"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "33026551"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10067-020-05388-7", 
      "https://app.dimensions.ai/details/publication/pub.1131477338"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:47", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_846.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10067-020-05388-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10067-020-05388-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10067-020-05388-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10067-020-05388-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10067-020-05388-7'


 

This table displays all metadata directly associated to this object as RDF triples.

282 TRIPLES      21 PREDICATES      116 URIs      106 LITERALS      15 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10067-020-05388-7 schema:about N0414cac63422494292ab1b50554de4f4
2 N09a8aa167e16411ab29368da2f017181
3 N0f8f2d69ac224adaaaffeeb0b6c24822
4 N2c7b303b60b74944921fcd6159e63b85
5 N40e54136f35a4d9eb415cd04986e7f35
6 N52e8ae4bfb54443ea65f929ee3359fde
7 N5bee77cf530c4349bc6c65b703981325
8 Na7dd1ea7187e44bc95f5abc06fc16f62
9 anzsrc-for:11
10 anzsrc-for:1103
11 schema:author N52094f859e1548379a73a8fedc1d6fdc
12 schema:citation sg:pub.10.1007/s00776-005-0889-5
13 sg:pub.10.1186/s12891-019-2624-y
14 schema:datePublished 2020-10-07
15 schema:datePublishedReg 2020-10-07
16 schema:description PurposeTo determine the reproducibility of the automatic cartilage segmentation method using a prototype KneeCaP software (version 1.3; Siemens Healthcare, Erlangen, Germany) and to compare the difference in cartilage volume (CV) between the normal knee joint and knee osteoarthritis (KOA) of different degrees by using the above software.Materials and methodsThe study included 62 subjects with knee OA and 29 healthy control subjects. The cartilage lesion patients were divided into a mild-to-moderate OA group (n = 29) and severe OA group (n = 33). Automatic cartilage segmentation was performed on all the subjects, and among them, 19 knee cases were randomly selected to also do the manual cartilage segmentation. Statistical significance was determined with one-way analysis of variance (ANOVA), intraclass correlation coefficient (ICC), and Pearson correlation coefficient. Automatic segmentation was compared with the manual one. The relative cartilage volume percentages of the femur, tibia, and patella in the normal control/mild-to-moderate/severe OA groups were assessed.ResultsComparing the cartilage volumes derived by manual and automatic segmentation, the ICC value for the knee joint, patella, femur, or tibia was 0.784, 0.815, 0.740, and 0.797. The relative cartilage volume percentages of the femur, tibia, and patella in the normal control/mild-to-moderate/severe OA groups were 57.28%/59.30%/62.45% (femur), 25.35%/23.46%/21.84% (tibia), and 17.37%/17.24%/15.71% (patella), respectively. Compared with the normal control group, the relative tibia cartilage volume percentage was lower in the mild-to-moderate OA group and the severe OA group. Corresponding index showed a similar difference between the mild-to-moderate OA group and the severe OA group (p < 0.001).ConclusionThis study demonstrated that the relative cartilage volume percentage is correlated with the semi-quantitative systems and may be a preferred outcome measure in clinical studies of OA. Automatic cartilage segmentation using KneeCaP delivered reliable results on high-spatial-resolution 3 T MR images for the healthy, mild-moderate OA patients.Key Points• The cartilage automatic segmentation has excellent reproducibility and was not affected by inter-observer variation.• The relative cartilage volume percentage is correlated with the semi-quantitative systems and may be a preferred outcome measure in clinical studies of OA.
17 schema:genre article
18 schema:isAccessibleForFree false
19 schema:isPartOf N76d7fdfaaf1047ecad37b195af6a18e2
20 N7f6db998727842acb3111ba401c24d72
21 sg:journal.1093299
22 schema:keywords ConclusionThis study
23 ICC values
24 MR images
25 MethodsThe study
26 OA
27 OA group
28 OA patients
29 Pearson correlation coefficient
30 PurposeTo
31 Similar differences
32 T MR images
33 above software
34 analysis
35 automatic cartilage segmentation
36 automatic segmentation
37 cartilage segmentation
38 cartilage segmentation method
39 cartilage volume
40 cases
41 clinical studies
42 coefficient
43 control group
44 control subjects
45 correlation coefficient
46 corresponding indices
47 degree
48 differences
49 different degrees
50 excellent reproducibility
51 femur
52 group
53 healthy control subjects
54 images
55 index
56 inter-observer variation
57 intraclass correlation coefficient
58 joints
59 knee OA
60 knee cases
61 knee joint
62 knee osteoarthritis
63 kneecap
64 lesion patients
65 manual cartilage segmentation
66 manual one
67 materials
68 measurements
69 measures
70 method
71 mild
72 moderate OA group
73 normal control group
74 normal knee joints
75 one
76 one-way analysis
77 osteoarthritis
78 outcome measures
79 patella
80 patients
81 percentage
82 preferred outcome measure
83 quantitative measurements
84 reliable results
85 reproducibility
86 results
87 segmentation
88 segmentation method
89 semi-quantitative system
90 severe OA group
91 significance
92 software
93 statistical significance
94 study
95 subjects
96 system
97 tibia
98 values
99 variance
100 variation
101 volume
102 volume percentage
103 schema:name Quantitative measurement of cartilage volume with automatic cartilage segmentation in knee osteoarthritis
104 schema:pagination 1997-2006
105 schema:productId N6af46e529de04ac6801c77c8bccfc0d1
106 N76d339e774654c8e84e262b9277d6d0e
107 Neb51ef5810824a7892cb961b38eb0494
108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1131477338
109 https://doi.org/10.1007/s10067-020-05388-7
110 schema:sdDatePublished 2022-10-01T06:47
111 schema:sdLicense https://scigraph.springernature.com/explorer/license/
112 schema:sdPublisher N91af4fec72a54328bdd1ef403494c13d
113 schema:url https://doi.org/10.1007/s10067-020-05388-7
114 sgo:license sg:explorer/license/
115 sgo:sdDataset articles
116 rdf:type schema:ScholarlyArticle
117 N0414cac63422494292ab1b50554de4f4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Germany
119 rdf:type schema:DefinedTerm
120 N09a8aa167e16411ab29368da2f017181 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Magnetic Resonance Imaging
122 rdf:type schema:DefinedTerm
123 N0f8f2d69ac224adaaaffeeb0b6c24822 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Humans
125 rdf:type schema:DefinedTerm
126 N1a56925c83e74fab90144d84dce4d219 rdf:first sg:person.01346614027.08
127 rdf:rest N70dc18f6c2ac448695d00bd9bd697c59
128 N2858db01b50648eb882a796704abc520 rdf:first sg:person.013232656557.16
129 rdf:rest Nb75afd3fa7cd408e8e3ad6d88e7f2bb3
130 N2c7b303b60b74944921fcd6159e63b85 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Knee Joint
132 rdf:type schema:DefinedTerm
133 N3d9141aa81f34b20b49cc55fa882d23a schema:affiliation grid-institutes:grid.416208.9
134 schema:familyName Zhao
135 schema:givenName Jun
136 rdf:type schema:Person
137 N40e54136f35a4d9eb415cd04986e7f35 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Osteoarthritis, Knee
139 rdf:type schema:DefinedTerm
140 N4286f18dbb654512990ad6010a06d4e2 rdf:first sg:person.013242307700.69
141 rdf:rest N81ae4e37d98e45f592924aa61f0163ea
142 N46614f6178bd4164ae081d0ee81b2878 rdf:first sg:person.016516265470.06
143 rdf:rest N1a56925c83e74fab90144d84dce4d219
144 N52094f859e1548379a73a8fedc1d6fdc rdf:first sg:person.011374642103.36
145 rdf:rest Nde2cec78ff4f44b8aa89bf5e1112863a
146 N52e8ae4bfb54443ea65f929ee3359fde schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Reproducibility of Results
148 rdf:type schema:DefinedTerm
149 N53195b6b5b8f4bbe97ab3a88914acdb1 rdf:first sg:person.013271062504.08
150 rdf:rest N8b30b9b8714d4774a3846fccc33f4a1a
151 N5bee77cf530c4349bc6c65b703981325 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Tibia
153 rdf:type schema:DefinedTerm
154 N5ece36a3862645d88571fde1c96a78b5 rdf:first sg:person.01351450411.61
155 rdf:rest Nee6f3cb4db224f14ae3662555f8a99a4
156 N6a4f71f34a324cbb893cc84dba56dfe9 schema:affiliation grid-institutes:grid.416208.9
157 schema:familyName Li
158 schema:givenName Jing
159 rdf:type schema:Person
160 N6af46e529de04ac6801c77c8bccfc0d1 schema:name dimensions_id
161 schema:value pub.1131477338
162 rdf:type schema:PropertyValue
163 N70dc18f6c2ac448695d00bd9bd697c59 rdf:first sg:person.0732615321.18
164 rdf:rest N2858db01b50648eb882a796704abc520
165 N76d339e774654c8e84e262b9277d6d0e schema:name pubmed_id
166 schema:value 33026551
167 rdf:type schema:PropertyValue
168 N76d7fdfaaf1047ecad37b195af6a18e2 schema:issueNumber 5
169 rdf:type schema:PublicationIssue
170 N7f6db998727842acb3111ba401c24d72 schema:volumeNumber 40
171 rdf:type schema:PublicationVolume
172 N81ae4e37d98e45f592924aa61f0163ea rdf:first sg:person.012172222503.22
173 rdf:rest N53195b6b5b8f4bbe97ab3a88914acdb1
174 N8b30b9b8714d4774a3846fccc33f4a1a rdf:first sg:person.01323676220.45
175 rdf:rest N9593d1529a9b4811bdaa5da64c6f308b
176 N91af4fec72a54328bdd1ef403494c13d schema:name Springer Nature - SN SciGraph project
177 rdf:type schema:Organization
178 N9593d1529a9b4811bdaa5da64c6f308b rdf:first sg:person.011061400755.21
179 rdf:rest N46614f6178bd4164ae081d0ee81b2878
180 Na7dd1ea7187e44bc95f5abc06fc16f62 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
181 schema:name Cartilage, Articular
182 rdf:type schema:DefinedTerm
183 Nb75afd3fa7cd408e8e3ad6d88e7f2bb3 rdf:first sg:person.011500761603.87
184 rdf:rest rdf:nil
185 Nde2cec78ff4f44b8aa89bf5e1112863a rdf:first N3d9141aa81f34b20b49cc55fa882d23a
186 rdf:rest N5ece36a3862645d88571fde1c96a78b5
187 Neb51ef5810824a7892cb961b38eb0494 schema:name doi
188 schema:value 10.1007/s10067-020-05388-7
189 rdf:type schema:PropertyValue
190 Nee6f3cb4db224f14ae3662555f8a99a4 rdf:first N6a4f71f34a324cbb893cc84dba56dfe9
191 rdf:rest N4286f18dbb654512990ad6010a06d4e2
192 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
193 schema:name Medical and Health Sciences
194 rdf:type schema:DefinedTerm
195 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
196 schema:name Clinical Sciences
197 rdf:type schema:DefinedTerm
198 sg:journal.1093299 schema:issn 0770-3198
199 1434-9949
200 schema:name Clinical Rheumatology
201 schema:publisher Springer Nature
202 rdf:type schema:Periodical
203 sg:person.011061400755.21 schema:affiliation grid-institutes:grid.416208.9
204 schema:familyName Li
205 schema:givenName Lian
206 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011061400755.21
207 rdf:type schema:Person
208 sg:person.011374642103.36 schema:affiliation grid-institutes:grid.416208.9
209 schema:familyName Hou
210 schema:givenName Wenjing
211 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011374642103.36
212 rdf:type schema:Person
213 sg:person.011500761603.87 schema:affiliation grid-institutes:grid.416208.9
214 schema:familyName Chen
215 schema:givenName Wei
216 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011500761603.87
217 rdf:type schema:Person
218 sg:person.012172222503.22 schema:affiliation grid-institutes:grid.416208.9
219 schema:familyName Du
220 schema:givenName Mingshan
221 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012172222503.22
222 rdf:type schema:Person
223 sg:person.013232656557.16 schema:affiliation grid-institutes:grid.16753.36
224 schema:familyName Zhang
225 schema:givenName Zhuoli
226 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013232656557.16
227 rdf:type schema:Person
228 sg:person.01323676220.45 schema:affiliation grid-institutes:grid.416208.9
229 schema:familyName Xie
230 schema:givenName Bing
231 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01323676220.45
232 rdf:type schema:Person
233 sg:person.013242307700.69 schema:affiliation grid-institutes:grid.416208.9
234 schema:familyName Ou
235 schema:givenName Yuan
236 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013242307700.69
237 rdf:type schema:Person
238 sg:person.013271062504.08 schema:affiliation grid-institutes:grid.416208.9
239 schema:familyName Xiong
240 schema:givenName Xuanqi
241 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013271062504.08
242 rdf:type schema:Person
243 sg:person.01346614027.08 schema:affiliation grid-institutes:None
244 schema:familyName Zuo
245 schema:givenName Panli
246 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01346614027.08
247 rdf:type schema:Person
248 sg:person.01351450411.61 schema:affiliation grid-institutes:grid.416208.9
249 schema:familyName He
250 schema:givenName Rui
251 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01351450411.61
252 rdf:type schema:Person
253 sg:person.016516265470.06 schema:affiliation grid-institutes:None
254 schema:familyName Zhou
255 schema:givenName Xiaoyue
256 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016516265470.06
257 rdf:type schema:Person
258 sg:person.0732615321.18 schema:affiliation grid-institutes:grid.5406.7
259 schema:familyName Raithel
260 schema:givenName Esther
261 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0732615321.18
262 rdf:type schema:Person
263 sg:pub.10.1007/s00776-005-0889-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001114358
264 https://doi.org/10.1007/s00776-005-0889-5
265 rdf:type schema:CreativeWork
266 sg:pub.10.1186/s12891-019-2624-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1115023238
267 https://doi.org/10.1186/s12891-019-2624-y
268 rdf:type schema:CreativeWork
269 grid-institutes:None schema:alternateName MR Collaboration NEA, Siemens Healthcare Ltd., 201318, Shanghai, People’s Republic of China
270 schema:name MR Collaboration NEA, Siemens Healthcare Ltd., 201318, Shanghai, People’s Republic of China
271 rdf:type schema:Organization
272 grid-institutes:grid.16753.36 schema:alternateName Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
273 schema:name Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
274 rdf:type schema:Organization
275 grid-institutes:grid.416208.9 schema:alternateName Centre of Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), 400038, Chongqing, China
276 Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Gaotanyan 30, Shapingba, 400038, Chongqing, People’s Republic of China
277 schema:name Centre of Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), 400038, Chongqing, China
278 Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Gaotanyan 30, Shapingba, 400038, Chongqing, People’s Republic of China
279 rdf:type schema:Organization
280 grid-institutes:grid.5406.7 schema:alternateName Siemens Healthcare GmbH, Erlangen, Germany
281 schema:name Siemens Healthcare GmbH, Erlangen, Germany
282 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...