A method for microstructure similarity clustering and feature reconstruction for weathered weak muddy intercalations View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-08-04

AUTHORS

Qijun Hu, Tianjun He, Tao Ye, Qijie Cai, Songsheng He, Leping He

ABSTRACT

Weak muddy intercalations (WMI) are a type of geo-material with highly unstable mechanical properties, and thus they pose a great threat to the stability of rock slopes and in other rock engineering situations. In this paper, microstructure similarity-based clustering together with image fusion and reconstruction are used to study the microstructures of shallow weathered WMI. The study aims to obtain a reconstructed image of microstructure features that can represent a region to provide the basis for subsequent studies on WMI mechanical properties. The similarity of each microscopic WMI image is calculated using a similarity calculation model based on the microstructure parameters, and images are clustered based on their similarities. Then, image fusion technology is used to combine images in the same cluster. The results are as follows: (1) Similarity corresponding to a cumulative distribution probability of 80% is used as the clustering threshold; (2) The fused WMI microstructure image can represent the microstructure of a layer in the sample. In view of these findings, WMI microstructure clustering and feature reconstruction can provide evidence for studies on WMI lamina structures and failures involving these, which formed the basis for the assessment of the stability of slopes and other situations in which WMI are present. More... »

PAGES

1-9

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10064-018-1353-z

DOI

http://dx.doi.org/10.1007/s10064-018-1353-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1105972809


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Southwest Petroleum University", 
          "id": "https://www.grid.ac/institutes/grid.437806.e", 
          "name": [
            "School of Civil Engineering and Architecture, Southwest Petroleum University, 610500, Chengdu, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hu", 
        "givenName": "Qijun", 
        "id": "sg:person.014514664757.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014514664757.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Southwest Petroleum University", 
          "id": "https://www.grid.ac/institutes/grid.437806.e", 
          "name": [
            "School of Civil Engineering and Architecture, Southwest Petroleum University, 610500, Chengdu, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "He", 
        "givenName": "Tianjun", 
        "id": "sg:person.012234506614.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012234506614.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Ranken Railway Construction Group Co., Ltd, 610046, Chengdu, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ye", 
        "givenName": "Tao", 
        "id": "sg:person.012376317657.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012376317657.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Southwest Jiaotong University", 
          "id": "https://www.grid.ac/institutes/grid.263901.f", 
          "name": [
            "School of Transportation and Logistics, Southwest Jiaotong University, 611756, Chengdu, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cai", 
        "givenName": "Qijie", 
        "id": "sg:person.010403610747.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010403610747.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Southwest Petroleum University", 
          "id": "https://www.grid.ac/institutes/grid.437806.e", 
          "name": [
            "School of Civil Engineering and Architecture, Southwest Petroleum University, 610500, Chengdu, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "He", 
        "givenName": "Songsheng", 
        "id": "sg:person.013323377547.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013323377547.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Southwest Petroleum University", 
          "id": "https://www.grid.ac/institutes/grid.437806.e", 
          "name": [
            "School of Civil Engineering and Architecture, Southwest Petroleum University, 610500, Chengdu, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "He", 
        "givenName": "Leping", 
        "id": "sg:person.016311301547.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016311301547.11"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0013-7952(02)00040-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005724674"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.enggeo.2013.06.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006438816"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep15880", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011775037", 
          "https://doi.org/10.1038/srep15880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0169-1317(03)00084-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015180409"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0169-1317(03)00084-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015180409"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.procs.2015.06.090", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019130145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10346-007-0094-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019647816", 
          "https://doi.org/10.1007/s10346-007-0094-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10346-007-0094-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019647816", 
          "https://doi.org/10.1007/s10346-007-0094-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0013-7944(02)00222-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021089586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0013-7944(02)00222-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021089586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compeleceng.2016.04.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024225998"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-00234-2_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026385764", 
          "https://doi.org/10.1007/978-3-642-00234-2_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.sigpro.2016.05.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026555985"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.proeng.2016.08.405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027225044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.clay.2011.07.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028360755"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1030944069", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1030944069", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10064-008-0180-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031428088", 
          "https://doi.org/10.1007/s10064-008-0180-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.enggeo.2014.07.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036271984"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12665-013-2341-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037552603", 
          "https://doi.org/10.1007/s12665-013-2341-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10064-011-0380-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039715578", 
          "https://doi.org/10.1007/s10064-011-0380-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.enggeo.2014.10.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040593269"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.micromeso.2012.11.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046941423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.marpetgeo.2013.10.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047760434"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2016/2158706", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049347667"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/03610926.2014.995820", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058330963"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.3097288", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062101161"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1180/0009855043930134", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064111665"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2017/3928047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074247750"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1105780005", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1106025748", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-08-04", 
    "datePublishedReg": "2018-08-04", 
    "description": "Weak muddy intercalations (WMI) are a type of geo-material with highly unstable mechanical properties, and thus they pose a great threat to the stability of rock slopes and in other rock engineering situations. In this paper, microstructure similarity-based clustering together with image fusion and reconstruction are used to study the microstructures of shallow weathered WMI. The study aims to obtain a reconstructed image of microstructure features that can represent a region to provide the basis for subsequent studies on WMI mechanical properties. The similarity of each microscopic WMI image is calculated using a similarity calculation model based on the microstructure parameters, and images are clustered based on their similarities. Then, image fusion technology is used to combine images in the same cluster. The results are as follows: (1) Similarity corresponding to a cumulative distribution probability of 80% is used as the clustering threshold; (2) The fused WMI microstructure image can represent the microstructure of a layer in the sample. In view of these findings, WMI microstructure clustering and feature reconstruction can provide evidence for studies on WMI lamina structures and failures involving these, which formed the basis for the assessment of the stability of slopes and other situations in which WMI are present.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10064-018-1353-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136592", 
        "issn": [
          "1435-9529", 
          "1435-9537"
        ], 
        "name": "Bulletin of Engineering Geology and the Environment", 
        "type": "Periodical"
      }
    ], 
    "name": "A method for microstructure similarity clustering and feature reconstruction for weathered weak muddy intercalations", 
    "pagination": "1-9", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "036636c3f9d0b8bf26ec795f5e8852dd8b88b6ff60281ee800ac75a8ecb3f4c6"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10064-018-1353-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1105972809"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10064-018-1353-z", 
      "https://app.dimensions.ai/details/publication/pub.1105972809"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:42", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000346_0000000346/records_99843_00000004.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10064-018-1353-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10064-018-1353-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10064-018-1353-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10064-018-1353-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10064-018-1353-z'


 

This table displays all metadata directly associated to this object as RDF triples.

179 TRIPLES      21 PREDICATES      51 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10064-018-1353-z schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N23374cccc6f74ab2bfe7d7c832fa1afc
4 schema:citation sg:pub.10.1007/978-3-642-00234-2_1
5 sg:pub.10.1007/s10064-008-0180-z
6 sg:pub.10.1007/s10064-011-0380-9
7 sg:pub.10.1007/s10346-007-0094-z
8 sg:pub.10.1007/s12665-013-2341-z
9 sg:pub.10.1038/srep15880
10 https://app.dimensions.ai/details/publication/pub.1030944069
11 https://app.dimensions.ai/details/publication/pub.1105780005
12 https://app.dimensions.ai/details/publication/pub.1106025748
13 https://doi.org/10.1016/j.clay.2011.07.022
14 https://doi.org/10.1016/j.compeleceng.2016.04.003
15 https://doi.org/10.1016/j.enggeo.2013.06.001
16 https://doi.org/10.1016/j.enggeo.2014.07.021
17 https://doi.org/10.1016/j.enggeo.2014.10.004
18 https://doi.org/10.1016/j.marpetgeo.2013.10.009
19 https://doi.org/10.1016/j.micromeso.2012.11.029
20 https://doi.org/10.1016/j.procs.2015.06.090
21 https://doi.org/10.1016/j.proeng.2016.08.405
22 https://doi.org/10.1016/j.sigpro.2016.05.015
23 https://doi.org/10.1016/s0013-7944(02)00222-9
24 https://doi.org/10.1016/s0013-7952(02)00040-6
25 https://doi.org/10.1016/s0169-1317(03)00084-x
26 https://doi.org/10.1080/03610926.2014.995820
27 https://doi.org/10.1115/1.3097288
28 https://doi.org/10.1155/2016/2158706
29 https://doi.org/10.1155/2017/3928047
30 https://doi.org/10.1180/0009855043930134
31 schema:datePublished 2018-08-04
32 schema:datePublishedReg 2018-08-04
33 schema:description Weak muddy intercalations (WMI) are a type of geo-material with highly unstable mechanical properties, and thus they pose a great threat to the stability of rock slopes and in other rock engineering situations. In this paper, microstructure similarity-based clustering together with image fusion and reconstruction are used to study the microstructures of shallow weathered WMI. The study aims to obtain a reconstructed image of microstructure features that can represent a region to provide the basis for subsequent studies on WMI mechanical properties. The similarity of each microscopic WMI image is calculated using a similarity calculation model based on the microstructure parameters, and images are clustered based on their similarities. Then, image fusion technology is used to combine images in the same cluster. The results are as follows: (1) Similarity corresponding to a cumulative distribution probability of 80% is used as the clustering threshold; (2) The fused WMI microstructure image can represent the microstructure of a layer in the sample. In view of these findings, WMI microstructure clustering and feature reconstruction can provide evidence for studies on WMI lamina structures and failures involving these, which formed the basis for the assessment of the stability of slopes and other situations in which WMI are present.
34 schema:genre research_article
35 schema:inLanguage en
36 schema:isAccessibleForFree false
37 schema:isPartOf sg:journal.1136592
38 schema:name A method for microstructure similarity clustering and feature reconstruction for weathered weak muddy intercalations
39 schema:pagination 1-9
40 schema:productId Ne4c3b085c08844c59c04b84c69b06e99
41 Ne97a80ef289b4a8383dbcc81f2ff30ad
42 Nf766a6cdccb4433fbf3a6fe9e83a97f6
43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105972809
44 https://doi.org/10.1007/s10064-018-1353-z
45 schema:sdDatePublished 2019-04-11T09:42
46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
47 schema:sdPublisher Neaa4aaa262ba4e569a6af8cc22dc5d75
48 schema:url https://link.springer.com/10.1007%2Fs10064-018-1353-z
49 sgo:license sg:explorer/license/
50 sgo:sdDataset articles
51 rdf:type schema:ScholarlyArticle
52 N043a9ee40a4e4e1887ed78b40b296ac2 rdf:first sg:person.010403610747.60
53 rdf:rest N5f7467b3d60e4f27ae17b67c8a769630
54 N23374cccc6f74ab2bfe7d7c832fa1afc rdf:first sg:person.014514664757.90
55 rdf:rest N4acc689d20c7421aacc29d417742e810
56 N4acc689d20c7421aacc29d417742e810 rdf:first sg:person.012234506614.93
57 rdf:rest N83322fefc4b440f18584890accd9475f
58 N5f7467b3d60e4f27ae17b67c8a769630 rdf:first sg:person.013323377547.44
59 rdf:rest Nd51957a48d7a4a88b3833350b6c13d25
60 N83322fefc4b440f18584890accd9475f rdf:first sg:person.012376317657.24
61 rdf:rest N043a9ee40a4e4e1887ed78b40b296ac2
62 Nab5ccdd5ed7c4c31b3a889d2e8e14d3c schema:name Ranken Railway Construction Group Co., Ltd, 610046, Chengdu, China
63 rdf:type schema:Organization
64 Nd51957a48d7a4a88b3833350b6c13d25 rdf:first sg:person.016311301547.11
65 rdf:rest rdf:nil
66 Ne4c3b085c08844c59c04b84c69b06e99 schema:name doi
67 schema:value 10.1007/s10064-018-1353-z
68 rdf:type schema:PropertyValue
69 Ne97a80ef289b4a8383dbcc81f2ff30ad schema:name dimensions_id
70 schema:value pub.1105972809
71 rdf:type schema:PropertyValue
72 Neaa4aaa262ba4e569a6af8cc22dc5d75 schema:name Springer Nature - SN SciGraph project
73 rdf:type schema:Organization
74 Nf766a6cdccb4433fbf3a6fe9e83a97f6 schema:name readcube_id
75 schema:value 036636c3f9d0b8bf26ec795f5e8852dd8b88b6ff60281ee800ac75a8ecb3f4c6
76 rdf:type schema:PropertyValue
77 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
78 schema:name Information and Computing Sciences
79 rdf:type schema:DefinedTerm
80 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
81 schema:name Artificial Intelligence and Image Processing
82 rdf:type schema:DefinedTerm
83 sg:journal.1136592 schema:issn 1435-9529
84 1435-9537
85 schema:name Bulletin of Engineering Geology and the Environment
86 rdf:type schema:Periodical
87 sg:person.010403610747.60 schema:affiliation https://www.grid.ac/institutes/grid.263901.f
88 schema:familyName Cai
89 schema:givenName Qijie
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010403610747.60
91 rdf:type schema:Person
92 sg:person.012234506614.93 schema:affiliation https://www.grid.ac/institutes/grid.437806.e
93 schema:familyName He
94 schema:givenName Tianjun
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012234506614.93
96 rdf:type schema:Person
97 sg:person.012376317657.24 schema:affiliation Nab5ccdd5ed7c4c31b3a889d2e8e14d3c
98 schema:familyName Ye
99 schema:givenName Tao
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012376317657.24
101 rdf:type schema:Person
102 sg:person.013323377547.44 schema:affiliation https://www.grid.ac/institutes/grid.437806.e
103 schema:familyName He
104 schema:givenName Songsheng
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013323377547.44
106 rdf:type schema:Person
107 sg:person.014514664757.90 schema:affiliation https://www.grid.ac/institutes/grid.437806.e
108 schema:familyName Hu
109 schema:givenName Qijun
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014514664757.90
111 rdf:type schema:Person
112 sg:person.016311301547.11 schema:affiliation https://www.grid.ac/institutes/grid.437806.e
113 schema:familyName He
114 schema:givenName Leping
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016311301547.11
116 rdf:type schema:Person
117 sg:pub.10.1007/978-3-642-00234-2_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026385764
118 https://doi.org/10.1007/978-3-642-00234-2_1
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/s10064-008-0180-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1031428088
121 https://doi.org/10.1007/s10064-008-0180-z
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/s10064-011-0380-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039715578
124 https://doi.org/10.1007/s10064-011-0380-9
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/s10346-007-0094-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1019647816
127 https://doi.org/10.1007/s10346-007-0094-z
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/s12665-013-2341-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1037552603
130 https://doi.org/10.1007/s12665-013-2341-z
131 rdf:type schema:CreativeWork
132 sg:pub.10.1038/srep15880 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011775037
133 https://doi.org/10.1038/srep15880
134 rdf:type schema:CreativeWork
135 https://app.dimensions.ai/details/publication/pub.1030944069 schema:CreativeWork
136 https://app.dimensions.ai/details/publication/pub.1105780005 schema:CreativeWork
137 https://app.dimensions.ai/details/publication/pub.1106025748 schema:CreativeWork
138 https://doi.org/10.1016/j.clay.2011.07.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028360755
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.compeleceng.2016.04.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024225998
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.enggeo.2013.06.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006438816
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.enggeo.2014.07.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036271984
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.enggeo.2014.10.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040593269
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.marpetgeo.2013.10.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047760434
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.micromeso.2012.11.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046941423
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.procs.2015.06.090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019130145
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.proeng.2016.08.405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027225044
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.sigpro.2016.05.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026555985
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/s0013-7944(02)00222-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021089586
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/s0013-7952(02)00040-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005724674
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/s0169-1317(03)00084-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1015180409
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1080/03610926.2014.995820 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058330963
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1115/1.3097288 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062101161
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1155/2016/2158706 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049347667
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1155/2017/3928047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074247750
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1180/0009855043930134 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064111665
173 rdf:type schema:CreativeWork
174 https://www.grid.ac/institutes/grid.263901.f schema:alternateName Southwest Jiaotong University
175 schema:name School of Transportation and Logistics, Southwest Jiaotong University, 611756, Chengdu, China
176 rdf:type schema:Organization
177 https://www.grid.ac/institutes/grid.437806.e schema:alternateName Southwest Petroleum University
178 schema:name School of Civil Engineering and Architecture, Southwest Petroleum University, 610500, Chengdu, China
179 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...