Numerical simulation of mechanical response of glacial tills under biaxial compression with the DEM View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Yankun Liang, Laifa Cao, Jinyuan Liu, Wanghua Sui

ABSTRACT

Glacial till deposits in the Greater Toronto Area (GTA) usually comprise fine-grained (clay and silt) and coarse-grained (sand, gravel, cobbles, and boulders) fractions, which are substantially heterogeneous in characteristics. Since coarse-grained fractions are too large to be tested in traditional laboratory equipment, the discrete element method (DEM) is applied in this study to simulate a series of large-scale biaxial tests to study the mechanical characterization of glacial till. This study is based on the results of comprehensive geotechnical investigations for the Eglinton Crosstown Light Rail Transit (LRT) Project in the GTA. The fine-grained till (clayey silt till) examined in this work is collected from the O’Connor Station site. The different proportions, gradations, and sizes of the coarse-grained fractions (gravel) with irregular random shapes and distributions are simulated. The analysis results indicate that the proportion of gravel influences the behavior and mechanical characterization of glacial till. The peak strength and initial modulus of the mixture gradually increase as the volumetric proportion of gravel increases to 30%. Beyond this percentage, the peak strength and initial modulus substantially increase. The failure mode of the sample changes from ductile to brittle with a volumetric proportion of gravel that is greater than 30%. In summary, when the volumetric proportion of gravel is limited to 30%, the gradation and size of the gravel only have a marginal influence on the mechanical characterization of the glacial till. However, a volumetric proportion of the gravel that exceeds 30% has significant impacts on the strength and deformation characteristics of glacial till. More... »

PAGES

1575-1588

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10064-018-1229-2

DOI

http://dx.doi.org/10.1007/s10064-018-1229-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1100562101


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "China University of Mining and Technology", 
          "id": "https://www.grid.ac/institutes/grid.411510.0", 
          "name": [
            "School of Resources and Geosciences, China University of Mining and Technology, Xuzhou, Jiangsu, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liang", 
        "givenName": "Yankun", 
        "id": "sg:person.015051225707.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015051225707.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "WSP (Canada)", 
          "id": "https://www.grid.ac/institutes/grid.450965.b", 
          "name": [
            "WSP Canada Inc, Toronto, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cao", 
        "givenName": "Laifa", 
        "id": "sg:person.013364375432.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013364375432.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ryerson University", 
          "id": "https://www.grid.ac/institutes/grid.68312.3e", 
          "name": [
            "Department of Civil Engineering, Ryerson University, M5B 2K3, Toronto, ON, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Jinyuan", 
        "id": "sg:person.01062130566.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01062130566.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "China University of Mining and Technology", 
          "id": "https://www.grid.ac/institutes/grid.411510.0", 
          "name": [
            "School of Resources and Geosciences, China University of Mining and Technology, Xuzhou, Jiangsu, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sui", 
        "givenName": "Wanghua", 
        "id": "sg:person.013307661311.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013307661311.59"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1139/t09-113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001723361"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.enggeo.2014.10.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004324193"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.partic.2008.11.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004794436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1139/t65-014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010472903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2113/gseegeosci.xxvii.2.245", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012712074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrmms.2007.09.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019354956"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/nag.304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021356675"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrmms.2007.02.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023352334"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1139/t88-048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025098595"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0013-7952(00)00051-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025836434"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrmms.2007.01.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026307904"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scient.2012.04.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029389691"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1139/t74-040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029734452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12517-013-0907-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032866857", 
          "https://doi.org/10.1007/s12517-013-0907-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10035-014-0504-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034930155", 
          "https://doi.org/10.1007/s10035-014-0504-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.enggeo.2003.11.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035621343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/matecconf/20141103009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035738047"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1139/t04-062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036130387"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.enggeo.2004.12.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037133718"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrmms.2013.11.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045825430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10035-012-0356-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046761006", 
          "https://doi.org/10.1007/s10035-012-0356-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10035-012-0356-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046761006", 
          "https://doi.org/10.1007/s10035-012-0356-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrmms.2004.09.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052533789"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/ma10010013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053577230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)0733-9410(1992)118:6(920)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057587449"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)1090-0241(2003)129:3(206)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057618655"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)1532-3641(2001)1:1(1)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057621154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/0295-5075/83/14001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064232096"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.12989/gae.2014.7.6.665", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064860718"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1680/geot.1979.29.1.47", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068209785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1520/stp37875s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1088495772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1520/stp39087s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1088496462"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jrmge.2017.02.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090834916"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/fskd.2009.686", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095020497"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/40512(289)16", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1097140445"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "Glacial till deposits in the Greater Toronto Area (GTA) usually comprise fine-grained (clay and silt) and coarse-grained (sand, gravel, cobbles, and boulders) fractions, which are substantially heterogeneous in characteristics. Since coarse-grained fractions are too large to be tested in traditional laboratory equipment, the discrete element method (DEM) is applied in this study to simulate a series of large-scale biaxial tests to study the mechanical characterization of glacial till. This study is based on the results of comprehensive geotechnical investigations for the Eglinton Crosstown Light Rail Transit (LRT) Project in the GTA. The fine-grained till (clayey silt till) examined in this work is collected from the O\u2019Connor Station site. The different proportions, gradations, and sizes of the coarse-grained fractions (gravel) with irregular random shapes and distributions are simulated. The analysis results indicate that the proportion of gravel influences the behavior and mechanical characterization of glacial till. The peak strength and initial modulus of the mixture gradually increase as the volumetric proportion of gravel increases to 30%. Beyond this percentage, the peak strength and initial modulus substantially increase. The failure mode of the sample changes from ductile to brittle with a volumetric proportion of gravel that is greater than 30%. In summary, when the volumetric proportion of gravel is limited to 30%, the gradation and size of the gravel only have a marginal influence on the mechanical characterization of the glacial till. However, a volumetric proportion of the gravel that exceeds 30% has significant impacts on the strength and deformation characteristics of glacial till.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10064-018-1229-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136592", 
        "issn": [
          "1435-9529", 
          "1435-9537"
        ], 
        "name": "Bulletin of Engineering Geology and the Environment", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "78"
      }
    ], 
    "name": "Numerical simulation of mechanical response of glacial tills under biaxial compression with the DEM", 
    "pagination": "1575-1588", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d3a3162b5118d89452e8b780e8c3803b2f962e3859658e55417d5cb50046df1c"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10064-018-1229-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1100562101"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10064-018-1229-2", 
      "https://app.dimensions.ai/details/publication/pub.1100562101"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:23", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000369_0000000369/records_68944_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10064-018-1229-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10064-018-1229-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10064-018-1229-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10064-018-1229-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10064-018-1229-2'


 

This table displays all metadata directly associated to this object as RDF triples.

193 TRIPLES      21 PREDICATES      61 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10064-018-1229-2 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N9f270761a2034168b1dd8dc954367513
4 schema:citation sg:pub.10.1007/s10035-012-0356-x
5 sg:pub.10.1007/s10035-014-0504-6
6 sg:pub.10.1007/s12517-013-0907-4
7 https://doi.org/10.1002/nag.304
8 https://doi.org/10.1016/j.enggeo.2003.11.004
9 https://doi.org/10.1016/j.enggeo.2004.12.003
10 https://doi.org/10.1016/j.enggeo.2014.10.007
11 https://doi.org/10.1016/j.ijrmms.2004.09.011
12 https://doi.org/10.1016/j.ijrmms.2007.01.004
13 https://doi.org/10.1016/j.ijrmms.2007.02.002
14 https://doi.org/10.1016/j.ijrmms.2007.09.003
15 https://doi.org/10.1016/j.ijrmms.2013.11.008
16 https://doi.org/10.1016/j.jrmge.2017.02.003
17 https://doi.org/10.1016/j.partic.2008.11.006
18 https://doi.org/10.1016/j.scient.2012.04.002
19 https://doi.org/10.1016/s0013-7952(00)00051-x
20 https://doi.org/10.1051/matecconf/20141103009
21 https://doi.org/10.1061/(asce)0733-9410(1992)118:6(920)
22 https://doi.org/10.1061/(asce)1090-0241(2003)129:3(206)
23 https://doi.org/10.1061/(asce)1532-3641(2001)1:1(1)
24 https://doi.org/10.1061/40512(289)16
25 https://doi.org/10.1109/fskd.2009.686
26 https://doi.org/10.1139/t04-062
27 https://doi.org/10.1139/t09-113
28 https://doi.org/10.1139/t65-014
29 https://doi.org/10.1139/t74-040
30 https://doi.org/10.1139/t88-048
31 https://doi.org/10.1209/0295-5075/83/14001
32 https://doi.org/10.12989/gae.2014.7.6.665
33 https://doi.org/10.1520/stp37875s
34 https://doi.org/10.1520/stp39087s
35 https://doi.org/10.1680/geot.1979.29.1.47
36 https://doi.org/10.2113/gseegeosci.xxvii.2.245
37 https://doi.org/10.3390/ma10010013
38 schema:datePublished 2019-04
39 schema:datePublishedReg 2019-04-01
40 schema:description Glacial till deposits in the Greater Toronto Area (GTA) usually comprise fine-grained (clay and silt) and coarse-grained (sand, gravel, cobbles, and boulders) fractions, which are substantially heterogeneous in characteristics. Since coarse-grained fractions are too large to be tested in traditional laboratory equipment, the discrete element method (DEM) is applied in this study to simulate a series of large-scale biaxial tests to study the mechanical characterization of glacial till. This study is based on the results of comprehensive geotechnical investigations for the Eglinton Crosstown Light Rail Transit (LRT) Project in the GTA. The fine-grained till (clayey silt till) examined in this work is collected from the O’Connor Station site. The different proportions, gradations, and sizes of the coarse-grained fractions (gravel) with irregular random shapes and distributions are simulated. The analysis results indicate that the proportion of gravel influences the behavior and mechanical characterization of glacial till. The peak strength and initial modulus of the mixture gradually increase as the volumetric proportion of gravel increases to 30%. Beyond this percentage, the peak strength and initial modulus substantially increase. The failure mode of the sample changes from ductile to brittle with a volumetric proportion of gravel that is greater than 30%. In summary, when the volumetric proportion of gravel is limited to 30%, the gradation and size of the gravel only have a marginal influence on the mechanical characterization of the glacial till. However, a volumetric proportion of the gravel that exceeds 30% has significant impacts on the strength and deformation characteristics of glacial till.
41 schema:genre research_article
42 schema:inLanguage en
43 schema:isAccessibleForFree false
44 schema:isPartOf N25ddf68adf294f639e8d42ca2277f1a0
45 N766dc9779d094f88a1d178a2c2477de6
46 sg:journal.1136592
47 schema:name Numerical simulation of mechanical response of glacial tills under biaxial compression with the DEM
48 schema:pagination 1575-1588
49 schema:productId Naedff69c8237403db32b3aff29e66056
50 Nca2d6c15421645beb8888a5f821fdd96
51 Nf6affbad36e945ebb4a44c1b5963c33a
52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100562101
53 https://doi.org/10.1007/s10064-018-1229-2
54 schema:sdDatePublished 2019-04-11T13:23
55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
56 schema:sdPublisher Nc41811c95fb0456cb701cc4fa3d4c197
57 schema:url https://link.springer.com/10.1007%2Fs10064-018-1229-2
58 sgo:license sg:explorer/license/
59 sgo:sdDataset articles
60 rdf:type schema:ScholarlyArticle
61 N25ddf68adf294f639e8d42ca2277f1a0 schema:volumeNumber 78
62 rdf:type schema:PublicationVolume
63 N2e6507293b834faa8e61cae81a6f877a rdf:first sg:person.013307661311.59
64 rdf:rest rdf:nil
65 N766dc9779d094f88a1d178a2c2477de6 schema:issueNumber 3
66 rdf:type schema:PublicationIssue
67 N879bc4b432f148bb9ff3777e658552ca rdf:first sg:person.01062130566.57
68 rdf:rest N2e6507293b834faa8e61cae81a6f877a
69 N9f270761a2034168b1dd8dc954367513 rdf:first sg:person.015051225707.36
70 rdf:rest Nb3b6d000c91648469bbf90fde9f42425
71 Naedff69c8237403db32b3aff29e66056 schema:name dimensions_id
72 schema:value pub.1100562101
73 rdf:type schema:PropertyValue
74 Nb3b6d000c91648469bbf90fde9f42425 rdf:first sg:person.013364375432.49
75 rdf:rest N879bc4b432f148bb9ff3777e658552ca
76 Nc41811c95fb0456cb701cc4fa3d4c197 schema:name Springer Nature - SN SciGraph project
77 rdf:type schema:Organization
78 Nca2d6c15421645beb8888a5f821fdd96 schema:name readcube_id
79 schema:value d3a3162b5118d89452e8b780e8c3803b2f962e3859658e55417d5cb50046df1c
80 rdf:type schema:PropertyValue
81 Nf6affbad36e945ebb4a44c1b5963c33a schema:name doi
82 schema:value 10.1007/s10064-018-1229-2
83 rdf:type schema:PropertyValue
84 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
85 schema:name Engineering
86 rdf:type schema:DefinedTerm
87 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
88 schema:name Materials Engineering
89 rdf:type schema:DefinedTerm
90 sg:journal.1136592 schema:issn 1435-9529
91 1435-9537
92 schema:name Bulletin of Engineering Geology and the Environment
93 rdf:type schema:Periodical
94 sg:person.01062130566.57 schema:affiliation https://www.grid.ac/institutes/grid.68312.3e
95 schema:familyName Liu
96 schema:givenName Jinyuan
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01062130566.57
98 rdf:type schema:Person
99 sg:person.013307661311.59 schema:affiliation https://www.grid.ac/institutes/grid.411510.0
100 schema:familyName Sui
101 schema:givenName Wanghua
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013307661311.59
103 rdf:type schema:Person
104 sg:person.013364375432.49 schema:affiliation https://www.grid.ac/institutes/grid.450965.b
105 schema:familyName Cao
106 schema:givenName Laifa
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013364375432.49
108 rdf:type schema:Person
109 sg:person.015051225707.36 schema:affiliation https://www.grid.ac/institutes/grid.411510.0
110 schema:familyName Liang
111 schema:givenName Yankun
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015051225707.36
113 rdf:type schema:Person
114 sg:pub.10.1007/s10035-012-0356-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1046761006
115 https://doi.org/10.1007/s10035-012-0356-x
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/s10035-014-0504-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034930155
118 https://doi.org/10.1007/s10035-014-0504-6
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/s12517-013-0907-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032866857
121 https://doi.org/10.1007/s12517-013-0907-4
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1002/nag.304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021356675
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.enggeo.2003.11.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035621343
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.enggeo.2004.12.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037133718
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.enggeo.2014.10.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004324193
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.ijrmms.2004.09.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052533789
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.ijrmms.2007.01.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026307904
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.ijrmms.2007.02.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023352334
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.ijrmms.2007.09.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019354956
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.ijrmms.2013.11.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045825430
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.jrmge.2017.02.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090834916
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.partic.2008.11.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004794436
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.scient.2012.04.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029389691
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/s0013-7952(00)00051-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1025836434
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1051/matecconf/20141103009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035738047
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1061/(asce)0733-9410(1992)118:6(920) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057587449
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1061/(asce)1090-0241(2003)129:3(206) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057618655
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1061/(asce)1532-3641(2001)1:1(1) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057621154
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1061/40512(289)16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1097140445
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1109/fskd.2009.686 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095020497
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1139/t04-062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036130387
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1139/t09-113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001723361
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1139/t65-014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010472903
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1139/t74-040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029734452
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1139/t88-048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025098595
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1209/0295-5075/83/14001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064232096
172 rdf:type schema:CreativeWork
173 https://doi.org/10.12989/gae.2014.7.6.665 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064860718
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1520/stp37875s schema:sameAs https://app.dimensions.ai/details/publication/pub.1088495772
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1520/stp39087s schema:sameAs https://app.dimensions.ai/details/publication/pub.1088496462
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1680/geot.1979.29.1.47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068209785
180 rdf:type schema:CreativeWork
181 https://doi.org/10.2113/gseegeosci.xxvii.2.245 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012712074
182 rdf:type schema:CreativeWork
183 https://doi.org/10.3390/ma10010013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053577230
184 rdf:type schema:CreativeWork
185 https://www.grid.ac/institutes/grid.411510.0 schema:alternateName China University of Mining and Technology
186 schema:name School of Resources and Geosciences, China University of Mining and Technology, Xuzhou, Jiangsu, China
187 rdf:type schema:Organization
188 https://www.grid.ac/institutes/grid.450965.b schema:alternateName WSP (Canada)
189 schema:name WSP Canada Inc, Toronto, Canada
190 rdf:type schema:Organization
191 https://www.grid.ac/institutes/grid.68312.3e schema:alternateName Ryerson University
192 schema:name Department of Civil Engineering, Ryerson University, M5B 2K3, Toronto, ON, Canada
193 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...