Characterizing groundwater flow in a translational rock landslide of southwestern China View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-12-18

AUTHORS

Hongbin Lv, Chengpeng Ling, Bill X. Hu, Jiaxin Ran, Yanan Zheng, Qiang Xu, Juxiu Tong

ABSTRACT

Characterizing the groundwater flow pattern in a landslide would help to establish a monitor-warning system to predict the movement of a highly concealed and extremely hazard translational landslide. The complex fracture network in this type of landslide affects the rainfall infiltration process and the groundwater flow. In this paper, multi-tracer tests, injection tests and electrical resistivity tomography were used to investigate the hydrogeological characteristics and groundwater dynamics of the Kualiangzi translational rock landslide, which is located in the northeast of the Sichuan Basin, China. The study results indicate that there are two kinds of groundwater flow mode, in the landslide, the concentrated mode and the dispersed mode. Tracer and injection test results indicate that the groundwater flow in the landslide is mainly controlled by a vertical preferential flow pathway (concentrated mode), of which the direction is approximately perpendicular to the sliding direction of the landslide. The main runoff direction in the middle of this landslide is southwest according to electrical resistivity tomography. The hydraulic conductivity in the preferential direction is more than 3750 times larger than that perpendicular to the direction. The groundwater flow along the weathered sandstone and mudstone media in the vicinity of the slip surface is very slow (dispersed mode). The results reveal the existence of a preferential flow pathway. The hydrogeological conceptual model is considered as an unbounded domain with an anisotropic medium in the whole area. This hydrogeological model clearly describes the hydrological conditions, and can help establish a monitor-warning system in a translational landslide. More... »

PAGES

1989-2007

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10064-017-1212-3

DOI

http://dx.doi.org/10.1007/s10064-017-1212-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1099698577


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0406", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Geography and Environmental Geoscience", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "College of Water Resources and Environmental Sciences, China University of Geosciences, 100083, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.162107.3", 
          "name": [
            "College of Water Resources and Environmental Sciences, China University of Geosciences, 100083, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lv", 
        "givenName": "Hongbin", 
        "id": "sg:person.010763257204.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010763257204.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "State Key Laboratory of Geohazards Prevention and Environment Protection, Chengdu University of Technology, 610059, Chengdu, Sichuan, China", 
          "id": "http://www.grid.ac/institutes/grid.411288.6", 
          "name": [
            "College of Environment and Civil Engineering, Chengdu University of Technology, 610059, Chengdu, Sichuan, China", 
            "State Key Laboratory of Geohazards Prevention and Environment Protection, Chengdu University of Technology, 610059, Chengdu, Sichuan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ling", 
        "givenName": "Chengpeng", 
        "id": "sg:person.015027156017.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015027156017.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Groundwater and Earth Sciences, Jinan University, 510632, Guangzhou, Guangdong, China", 
          "id": "http://www.grid.ac/institutes/grid.258164.c", 
          "name": [
            "College of Water Resources and Environmental Sciences, China University of Geosciences, 100083, Beijing, China", 
            "Institute of Groundwater and Earth Sciences, Jinan University, 510632, Guangzhou, Guangdong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hu", 
        "givenName": "Bill X.", 
        "id": "sg:person.012556140447.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012556140447.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "College of Environment and Civil Engineering, Chengdu University of Technology, 610059, Chengdu, Sichuan, China", 
          "id": "http://www.grid.ac/institutes/grid.411288.6", 
          "name": [
            "College of Environment and Civil Engineering, Chengdu University of Technology, 610059, Chengdu, Sichuan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ran", 
        "givenName": "Jiaxin", 
        "id": "sg:person.010165676604.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010165676604.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "College of Water Resources and Environmental Sciences, China University of Geosciences, 100083, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.162107.3", 
          "name": [
            "College of Water Resources and Environmental Sciences, China University of Geosciences, 100083, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zheng", 
        "givenName": "Yanan", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "State Key Laboratory of Geohazards Prevention and Environment Protection, Chengdu University of Technology, 610059, Chengdu, Sichuan, China", 
          "id": "http://www.grid.ac/institutes/grid.411288.6", 
          "name": [
            "College of Environment and Civil Engineering, Chengdu University of Technology, 610059, Chengdu, Sichuan, China", 
            "State Key Laboratory of Geohazards Prevention and Environment Protection, Chengdu University of Technology, 610059, Chengdu, Sichuan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xu", 
        "givenName": "Qiang", 
        "id": "sg:person.011415614443.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011415614443.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "College of Water Resources and Environmental Sciences, China University of Geosciences, 100083, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.162107.3", 
          "name": [
            "College of Water Resources and Environmental Sciences, China University of Geosciences, 100083, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tong", 
        "givenName": "Juxiu", 
        "id": "sg:person.010314752347.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010314752347.24"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10064-011-0403-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026949670", 
          "https://doi.org/10.1007/s10064-011-0403-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10040-010-0577-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016361801", 
          "https://doi.org/10.1007/s10040-010-0577-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10064-009-0194-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010315336", 
          "https://doi.org/10.1007/s10064-009-0194-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s100400050193", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038688177", 
          "https://doi.org/10.1007/s100400050193"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10346-016-0717-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048586808", 
          "https://doi.org/10.1007/s10346-016-0717-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10040-008-0408-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012613596", 
          "https://doi.org/10.1007/s10040-008-0408-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/physci231064a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016036760", 
          "https://doi.org/10.1038/physci231064a0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-12-18", 
    "datePublishedReg": "2017-12-18", 
    "description": "Characterizing the groundwater flow pattern in a landslide would help to establish a monitor-warning system to predict the movement of a highly concealed and extremely hazard translational landslide. The complex fracture network in this type of landslide affects the rainfall infiltration process and the groundwater flow. In this paper, multi-tracer tests, injection tests and electrical resistivity tomography were used to investigate the hydrogeological characteristics and groundwater dynamics of the Kualiangzi translational rock landslide, which is located in the northeast of the Sichuan Basin, China. The study results indicate that there are two kinds of groundwater flow mode, in the landslide, the concentrated mode and the dispersed mode. Tracer and injection test results indicate that the groundwater flow in the landslide is mainly controlled by a vertical preferential flow pathway (concentrated mode), of which the direction is approximately perpendicular to the sliding direction of the landslide. The main runoff direction in the middle of this landslide is southwest according to electrical resistivity tomography. The hydraulic conductivity in the preferential direction is more than 3750 times larger than that perpendicular to the direction. The groundwater flow along the weathered sandstone and mudstone media in the vicinity of the slip surface is very slow (dispersed mode). The results reveal the existence of a preferential flow pathway. The hydrogeological conceptual model is considered as an unbounded domain with an anisotropic medium in the whole area. This hydrogeological model clearly describes the hydrological conditions, and can help establish a monitor-warning system in a translational landslide.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10064-017-1212-3", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.8231944", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6978231", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1136592", 
        "issn": [
          "1435-9529", 
          "1435-9537"
        ], 
        "name": "Bulletin of Engineering Geology and the Environment", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "78"
      }
    ], 
    "keywords": [
      "electrical resistivity tomography", 
      "preferential flow pathways", 
      "groundwater flow", 
      "resistivity tomography", 
      "flow pathways", 
      "translational landslides", 
      "rock landslide", 
      "multi-tracer tests", 
      "groundwater flow patterns", 
      "hydrogeological conceptual model", 
      "rainfall infiltration process", 
      "types of landslides", 
      "injection test results", 
      "groundwater dynamics", 
      "hydrogeological characteristics", 
      "hydrogeological model", 
      "Sichuan Basin", 
      "runoff direction", 
      "hydrological conditions", 
      "fracture network", 
      "landslides", 
      "hydraulic conductivity", 
      "slip surface", 
      "southwestern China", 
      "complex fracture network", 
      "whole area", 
      "groundwater", 
      "injection tests", 
      "infiltration process", 
      "conceptual model", 
      "flow patterns", 
      "China", 
      "concentrated mode", 
      "basin", 
      "sandstones", 
      "southwest", 
      "northeast", 
      "preferential direction", 
      "flow", 
      "tracer", 
      "middle", 
      "direction", 
      "vicinity", 
      "anisotropic media", 
      "area", 
      "model", 
      "dynamics", 
      "surface", 
      "conductivity", 
      "patterns", 
      "movement", 
      "perpendicular", 
      "study results", 
      "conditions", 
      "mode", 
      "results", 
      "process", 
      "characteristics", 
      "system", 
      "existence", 
      "time", 
      "types", 
      "tomography", 
      "flow mode", 
      "domain", 
      "network", 
      "pathway", 
      "medium", 
      "test", 
      "paper", 
      "kind", 
      "test results", 
      "unbounded domains", 
      "monitor-warning system", 
      "hazard translational landslide", 
      "Kualiangzi translational rock landslide", 
      "translational rock landslide", 
      "groundwater flow mode", 
      "vertical preferential flow pathway", 
      "main runoff direction", 
      "mudstone media"
    ], 
    "name": "Characterizing groundwater flow in a translational rock landslide of southwestern China", 
    "pagination": "1989-2007", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1099698577"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10064-017-1212-3"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10064-017-1212-3", 
      "https://app.dimensions.ai/details/publication/pub.1099698577"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:45", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_749.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10064-017-1212-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10064-017-1212-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10064-017-1212-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10064-017-1212-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10064-017-1212-3'


 

This table displays all metadata directly associated to this object as RDF triples.

221 TRIPLES      22 PREDICATES      113 URIs      98 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10064-017-1212-3 schema:about anzsrc-for:04
2 anzsrc-for:0406
3 schema:author Nac3a0941118b43068beac3a775c3b306
4 schema:citation sg:pub.10.1007/s10040-008-0408-9
5 sg:pub.10.1007/s10040-010-0577-1
6 sg:pub.10.1007/s100400050193
7 sg:pub.10.1007/s10064-009-0194-1
8 sg:pub.10.1007/s10064-011-0403-6
9 sg:pub.10.1007/s10346-016-0717-3
10 sg:pub.10.1038/physci231064a0
11 schema:datePublished 2017-12-18
12 schema:datePublishedReg 2017-12-18
13 schema:description Characterizing the groundwater flow pattern in a landslide would help to establish a monitor-warning system to predict the movement of a highly concealed and extremely hazard translational landslide. The complex fracture network in this type of landslide affects the rainfall infiltration process and the groundwater flow. In this paper, multi-tracer tests, injection tests and electrical resistivity tomography were used to investigate the hydrogeological characteristics and groundwater dynamics of the Kualiangzi translational rock landslide, which is located in the northeast of the Sichuan Basin, China. The study results indicate that there are two kinds of groundwater flow mode, in the landslide, the concentrated mode and the dispersed mode. Tracer and injection test results indicate that the groundwater flow in the landslide is mainly controlled by a vertical preferential flow pathway (concentrated mode), of which the direction is approximately perpendicular to the sliding direction of the landslide. The main runoff direction in the middle of this landslide is southwest according to electrical resistivity tomography. The hydraulic conductivity in the preferential direction is more than 3750 times larger than that perpendicular to the direction. The groundwater flow along the weathered sandstone and mudstone media in the vicinity of the slip surface is very slow (dispersed mode). The results reveal the existence of a preferential flow pathway. The hydrogeological conceptual model is considered as an unbounded domain with an anisotropic medium in the whole area. This hydrogeological model clearly describes the hydrological conditions, and can help establish a monitor-warning system in a translational landslide.
14 schema:genre article
15 schema:inLanguage en
16 schema:isAccessibleForFree false
17 schema:isPartOf Ndffff6bdc2c3484aa259b5b165a22788
18 Nfcd7989e54ae493d9a95dc9d98c84db3
19 sg:journal.1136592
20 schema:keywords China
21 Kualiangzi translational rock landslide
22 Sichuan Basin
23 anisotropic media
24 area
25 basin
26 characteristics
27 complex fracture network
28 concentrated mode
29 conceptual model
30 conditions
31 conductivity
32 direction
33 domain
34 dynamics
35 electrical resistivity tomography
36 existence
37 flow
38 flow mode
39 flow pathways
40 flow patterns
41 fracture network
42 groundwater
43 groundwater dynamics
44 groundwater flow
45 groundwater flow mode
46 groundwater flow patterns
47 hazard translational landslide
48 hydraulic conductivity
49 hydrogeological characteristics
50 hydrogeological conceptual model
51 hydrogeological model
52 hydrological conditions
53 infiltration process
54 injection test results
55 injection tests
56 kind
57 landslides
58 main runoff direction
59 medium
60 middle
61 mode
62 model
63 monitor-warning system
64 movement
65 mudstone media
66 multi-tracer tests
67 network
68 northeast
69 paper
70 pathway
71 patterns
72 perpendicular
73 preferential direction
74 preferential flow pathways
75 process
76 rainfall infiltration process
77 resistivity tomography
78 results
79 rock landslide
80 runoff direction
81 sandstones
82 slip surface
83 southwest
84 southwestern China
85 study results
86 surface
87 system
88 test
89 test results
90 time
91 tomography
92 tracer
93 translational landslides
94 translational rock landslide
95 types
96 types of landslides
97 unbounded domains
98 vertical preferential flow pathway
99 vicinity
100 whole area
101 schema:name Characterizing groundwater flow in a translational rock landslide of southwestern China
102 schema:pagination 1989-2007
103 schema:productId N699d37e45af049768e90826209655e46
104 N89f3d492c90f46daa7fe5384be58644c
105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099698577
106 https://doi.org/10.1007/s10064-017-1212-3
107 schema:sdDatePublished 2022-01-01T18:45
108 schema:sdLicense https://scigraph.springernature.com/explorer/license/
109 schema:sdPublisher N2fd012b6079d485d8490e1c3424847f8
110 schema:url https://doi.org/10.1007/s10064-017-1212-3
111 sgo:license sg:explorer/license/
112 sgo:sdDataset articles
113 rdf:type schema:ScholarlyArticle
114 N2fd012b6079d485d8490e1c3424847f8 schema:name Springer Nature - SN SciGraph project
115 rdf:type schema:Organization
116 N53d4fea455f34781a7fe2f858dce2445 rdf:first Nc9296b2a0b7d40dfb278ac91d004d033
117 rdf:rest Nd57e0f8f156b4620ae71d8380794773c
118 N699d37e45af049768e90826209655e46 schema:name doi
119 schema:value 10.1007/s10064-017-1212-3
120 rdf:type schema:PropertyValue
121 N758714afcfd44a1fa71dae1c7d0f56b1 rdf:first sg:person.010165676604.39
122 rdf:rest N53d4fea455f34781a7fe2f858dce2445
123 N7968b43cb05e4d16bff12132e553a7c7 rdf:first sg:person.010314752347.24
124 rdf:rest rdf:nil
125 N89f3d492c90f46daa7fe5384be58644c schema:name dimensions_id
126 schema:value pub.1099698577
127 rdf:type schema:PropertyValue
128 N9ae886df22724af29f07b1db11365bcd rdf:first sg:person.012556140447.41
129 rdf:rest N758714afcfd44a1fa71dae1c7d0f56b1
130 N9cf66bc8d7ab43e29dc80052462d0e19 rdf:first sg:person.015027156017.54
131 rdf:rest N9ae886df22724af29f07b1db11365bcd
132 Nac3a0941118b43068beac3a775c3b306 rdf:first sg:person.010763257204.15
133 rdf:rest N9cf66bc8d7ab43e29dc80052462d0e19
134 Nc9296b2a0b7d40dfb278ac91d004d033 schema:affiliation grid-institutes:grid.162107.3
135 schema:familyName Zheng
136 schema:givenName Yanan
137 rdf:type schema:Person
138 Nd57e0f8f156b4620ae71d8380794773c rdf:first sg:person.011415614443.30
139 rdf:rest N7968b43cb05e4d16bff12132e553a7c7
140 Ndffff6bdc2c3484aa259b5b165a22788 schema:issueNumber 3
141 rdf:type schema:PublicationIssue
142 Nfcd7989e54ae493d9a95dc9d98c84db3 schema:volumeNumber 78
143 rdf:type schema:PublicationVolume
144 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
145 schema:name Earth Sciences
146 rdf:type schema:DefinedTerm
147 anzsrc-for:0406 schema:inDefinedTermSet anzsrc-for:
148 schema:name Physical Geography and Environmental Geoscience
149 rdf:type schema:DefinedTerm
150 sg:grant.6978231 http://pending.schema.org/fundedItem sg:pub.10.1007/s10064-017-1212-3
151 rdf:type schema:MonetaryGrant
152 sg:grant.8231944 http://pending.schema.org/fundedItem sg:pub.10.1007/s10064-017-1212-3
153 rdf:type schema:MonetaryGrant
154 sg:journal.1136592 schema:issn 1435-9529
155 1435-9537
156 schema:name Bulletin of Engineering Geology and the Environment
157 schema:publisher Springer Nature
158 rdf:type schema:Periodical
159 sg:person.010165676604.39 schema:affiliation grid-institutes:grid.411288.6
160 schema:familyName Ran
161 schema:givenName Jiaxin
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010165676604.39
163 rdf:type schema:Person
164 sg:person.010314752347.24 schema:affiliation grid-institutes:grid.162107.3
165 schema:familyName Tong
166 schema:givenName Juxiu
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010314752347.24
168 rdf:type schema:Person
169 sg:person.010763257204.15 schema:affiliation grid-institutes:grid.162107.3
170 schema:familyName Lv
171 schema:givenName Hongbin
172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010763257204.15
173 rdf:type schema:Person
174 sg:person.011415614443.30 schema:affiliation grid-institutes:grid.411288.6
175 schema:familyName Xu
176 schema:givenName Qiang
177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011415614443.30
178 rdf:type schema:Person
179 sg:person.012556140447.41 schema:affiliation grid-institutes:grid.258164.c
180 schema:familyName Hu
181 schema:givenName Bill X.
182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012556140447.41
183 rdf:type schema:Person
184 sg:person.015027156017.54 schema:affiliation grid-institutes:grid.411288.6
185 schema:familyName Ling
186 schema:givenName Chengpeng
187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015027156017.54
188 rdf:type schema:Person
189 sg:pub.10.1007/s10040-008-0408-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012613596
190 https://doi.org/10.1007/s10040-008-0408-9
191 rdf:type schema:CreativeWork
192 sg:pub.10.1007/s10040-010-0577-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016361801
193 https://doi.org/10.1007/s10040-010-0577-1
194 rdf:type schema:CreativeWork
195 sg:pub.10.1007/s100400050193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038688177
196 https://doi.org/10.1007/s100400050193
197 rdf:type schema:CreativeWork
198 sg:pub.10.1007/s10064-009-0194-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010315336
199 https://doi.org/10.1007/s10064-009-0194-1
200 rdf:type schema:CreativeWork
201 sg:pub.10.1007/s10064-011-0403-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026949670
202 https://doi.org/10.1007/s10064-011-0403-6
203 rdf:type schema:CreativeWork
204 sg:pub.10.1007/s10346-016-0717-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048586808
205 https://doi.org/10.1007/s10346-016-0717-3
206 rdf:type schema:CreativeWork
207 sg:pub.10.1038/physci231064a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016036760
208 https://doi.org/10.1038/physci231064a0
209 rdf:type schema:CreativeWork
210 grid-institutes:grid.162107.3 schema:alternateName College of Water Resources and Environmental Sciences, China University of Geosciences, 100083, Beijing, China
211 schema:name College of Water Resources and Environmental Sciences, China University of Geosciences, 100083, Beijing, China
212 rdf:type schema:Organization
213 grid-institutes:grid.258164.c schema:alternateName Institute of Groundwater and Earth Sciences, Jinan University, 510632, Guangzhou, Guangdong, China
214 schema:name College of Water Resources and Environmental Sciences, China University of Geosciences, 100083, Beijing, China
215 Institute of Groundwater and Earth Sciences, Jinan University, 510632, Guangzhou, Guangdong, China
216 rdf:type schema:Organization
217 grid-institutes:grid.411288.6 schema:alternateName College of Environment and Civil Engineering, Chengdu University of Technology, 610059, Chengdu, Sichuan, China
218 State Key Laboratory of Geohazards Prevention and Environment Protection, Chengdu University of Technology, 610059, Chengdu, Sichuan, China
219 schema:name College of Environment and Civil Engineering, Chengdu University of Technology, 610059, Chengdu, Sichuan, China
220 State Key Laboratory of Geohazards Prevention and Environment Protection, Chengdu University of Technology, 610059, Chengdu, Sichuan, China
221 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...