Adaptive neuro-fuzzy inference system (ANFIS) modeling for landslide susceptibility assessment in a Mediterranean hilly area View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03

AUTHORS

Christos Polykretis, Christos Chalkias, Maria Ferentinou

ABSTRACT

In this paper, an adaptive neuro-fuzzy modeling (ANFIS) is applied in order to map landslide susceptibility for a Mediterranean catchment (Peloponnese, Greece). The relationship between landslides and factors influencing their occurrence is investigated in GIS environment. Seven conditioning factors, including elevation, slope angle, profile curvature, stream density, distance to main roads, geology, and vegetation were considered in the analysis. Six ANFIS models with different membership functions were developed to generate the corresponding landslide susceptibility maps. The outputs, representing the probability level of landslide occurrence, were grouped into five classes. They were then evaluated using an independent dataset of landslide events in two different validation methods: receiver operating characteristics (ROC) analysis and success and prediction rates. The majority of the calculated area under the curve values for the two validation methods was in the range 0.70–0.90 indicating between fair and very good prediction accuracy for the six models. These values also showed that the prediction accuracy depends on the membership functions examined in the ANFIS modeling. Among these functions, the difference of two sigmoidally shaped (Dsigmf) and product of two sigmoidally shaped (Psigmf) presented the highest prediction accuracy. More... »

PAGES

1173-1187

References to SciGraph publications

  • 2006-05. Landslide hazard and risk zonation—why is it still so difficult? in BULLETIN OF ENGINEERING GEOLOGY AND THE ENVIRONMENT
  • 2015-05. Application and comparison of shallow landslide susceptibility models in weathered granite soil under extreme rainfall events in ENVIRONMENTAL EARTH SCIENCES
  • 2011-11. Landslide susceptibility zonation study using remote sensing and GIS technology in the Ken-Betwa River Link area, India in BULLETIN OF ENGINEERING GEOLOGY AND THE ENVIRONMENT
  • 2013-01. Landslide susceptibility zonation in Greece in NATURAL HAZARDS
  • 2011-12. Frequency ratio model based landslide susceptibility mapping in lower Mae Chaem watershed, Northern Thailand in ENVIRONMENTAL EARTH SCIENCES
  • 2014-12. Landslide susceptibility mapping by comparing the WLC and WofE multi-criteria methods in the West Crete Island, Greece in ENVIRONMENTAL EARTH SCIENCES
  • 2009-04. A back-propagation network for the assessment of susceptibility to rock slope failure in the eastern portion of the Southern Cross-Island Highway in Taiwan in ENVIRONMENTAL GEOLOGY
  • 2015-02. A comparative study of landslide susceptibility mapping using landslide susceptibility index and artificial neural networks in the Krios River and Krathis River catchments (northern Peloponnesus, Greece) in BULLETIN OF ENGINEERING GEOLOGY AND THE ENVIRONMENT
  • 2012-08. Remote sensing and GIS-based landslide susceptibility mapping using frequency ratio and analytical hierarchy methods in Rize province (NE Turkey) in ENVIRONMENTAL EARTH SCIENCES
  • 2014-06. Relative effect method of landslide susceptibility zonation in weathered granite soil: a case study in Deokjeok-ri Creek, South Korea in NATURAL HAZARDS
  • 2013-12. GIS-based statistical analysis of the spatial distribution of earthquake-induced landslides in the island of Lefkada, Ionian Islands, Greece in LANDSLIDES
  • 2012-03. A comparison of landslide susceptibility maps produced by logistic regression, multi-criteria decision, and likelihood ratio methods: a case study at İzmir, Turkey in LANDSLIDES
  • 2015-04. Mapping of rainfall-induced landslide susceptibility in Wencheng, China, using support vector machine in NATURAL HAZARDS
  • 2016-04. Applying weight of evidence method and sensitivity analysis to produce a landslide susceptibility map in LANDSLIDES
  • 2016-05. Modification of seed cell sampling strategy for landslide susceptibility mapping: an application from the Eastern part of the Gallipoli Peninsula (Canakkale, Turkey) in BULLETIN OF ENGINEERING GEOLOGY AND THE ENVIRONMENT
  • 2013. Mapping Mass Movement Susceptibility Across Greece with GIS, ANN and Statistical Methods in LANDSLIDE SCIENCE AND PRACTICE
  • 2013-08. A comparative study of generalized regression neural network approach and adaptive neuro-fuzzy inference systems for prediction of unconfined compressive strength of rocks in NEURAL COMPUTING AND APPLICATIONS
  • 2012-11. Adaptive neuro-fuzzy estimation of autonomic nervous system parameters effect on heart rate variability in NEURAL COMPUTING AND APPLICATIONS
  • 2014-12. Estimating landslide susceptibility through a artificial neural network classifier in NATURAL HAZARDS
  • 2010-12. Comparing predictive capability of statistical and deterministic methods for landslide susceptibility mapping: a case study in the northern Apennines (Reggio Emilia Province, Italy) in LANDSLIDES
  • 2018-08. Feasibility of PSO–ANFIS model to estimate rock fragmentation produced by mine blasting in NEURAL COMPUTING AND APPLICATIONS
  • 2013-12. Improvement of customers’ satisfaction with new product design using an adaptive neuro-fuzzy inference systems approach in NEURAL COMPUTING AND APPLICATIONS
  • 2003-11. Landslide Susceptibility Models Utilising Spatial Data Analysis Techniques. A Case Study from the Lower Deba Valley, Guipuzcoa (Spain) in NATURAL HAZARDS
  • 2016-12. Modeling landslide susceptibility in Greece: a weighted linear combination approach using analytic hierarchical process, validated with spatial and statistical analysis in NATURAL HAZARDS
  • 2016-04. Landslide susceptibility mapping using a modified decision tree classifier in the Xanthi Perfection, Greece in LANDSLIDES
  • 2013-08. Tuberculosis disease diagnosis by using adaptive neuro fuzzy inference system and rough sets in NEURAL COMPUTING AND APPLICATIONS
  • 2016-08. GIS-based landslide susceptibility mapping with logistic regression, analytical hierarchy process, and combined fuzzy and support vector machine methods: a case study from Wolong Giant Panda Natural Reserve, China in BULLETIN OF ENGINEERING GEOLOGY AND THE ENVIRONMENT
  • 2014-07. Flood flow forecasting using ANN, ANFIS and regression models in NEURAL COMPUTING AND APPLICATIONS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10064-017-1125-1

    DOI

    http://dx.doi.org/10.1007/s10064-017-1125-1

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1090739455


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Statistics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Harokopio University", 
              "id": "https://www.grid.ac/institutes/grid.15823.3d", 
              "name": [
                "Department of Geography, Harokopio University, El. Venizelou 70, 17671, Athens, Greece"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Polykretis", 
            "givenName": "Christos", 
            "id": "sg:person.016521065411.35", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016521065411.35"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Harokopio University", 
              "id": "https://www.grid.ac/institutes/grid.15823.3d", 
              "name": [
                "Department of Geography, Harokopio University, El. Venizelou 70, 17671, Athens, Greece"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chalkias", 
            "givenName": "Christos", 
            "id": "sg:person.014601213533.66", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014601213533.66"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Johannesburg", 
              "id": "https://www.grid.ac/institutes/grid.412988.e", 
              "name": [
                "Department of Civil Engineering Science, University of Johannesburg, Auckland Park Kingsway Campus, 2006, Auckland, South Africa"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ferentinou", 
            "givenName": "Maria", 
            "id": "sg:person.07471103333.21", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07471103333.21"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s10346-010-0207-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001211931", 
              "https://doi.org/10.1007/s10346-010-0207-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10346-010-0207-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001211931", 
              "https://doi.org/10.1007/s10346-010-0207-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.enggeo.2015.12.013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002402837"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11069-014-1562-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003051939", 
              "https://doi.org/10.1007/s11069-014-1562-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00521-013-1431-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003246532", 
              "https://doi.org/10.1007/s00521-013-1431-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.eswa.2010.12.167", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003712455"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10064-014-0607-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004324851", 
              "https://doi.org/10.1007/s10064-014-0607-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10064-005-0023-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004521021", 
              "https://doi.org/10.1007/s10064-005-0023-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10064-005-0023-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004521021", 
              "https://doi.org/10.1007/s10064-005-0023-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/b:nhaz.0000007202.12543.3a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007389590", 
              "https://doi.org/10.1023/b:nhaz.0000007202.12543.3a"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/17445647.2014.884022", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007681559"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cageo.2010.10.012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008087502"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12665-011-1432-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008708064", 
              "https://doi.org/10.1007/s12665-011-1432-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3390/ijgi3020523", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008806825"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00521-012-0944-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010393270", 
              "https://doi.org/10.1007/s00521-012-0944-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10346-011-0283-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014324470", 
              "https://doi.org/10.1007/s10346-011-0283-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11069-016-2523-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015212329", 
              "https://doi.org/10.1007/s11069-016-2523-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10064-015-0786-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017609195", 
              "https://doi.org/10.1007/s10064-015-0786-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10064-015-0759-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019626648", 
              "https://doi.org/10.1007/s10064-015-0759-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5194/nhess-11-1927-2011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020670293"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11069-012-0381-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023459724", 
              "https://doi.org/10.1007/s11069-012-0381-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10346-015-0576-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025715479", 
              "https://doi.org/10.1007/s10346-015-0576-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12665-014-3829-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025941572", 
              "https://doi.org/10.1007/s12665-014-3829-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.compenvurbsys.2009.12.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026136858"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.eswa.2010.12.083", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026416714"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.geomorph.2009.02.026", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027114246"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11069-014-1065-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027567675", 
              "https://doi.org/10.1007/s11069-014-1065-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cageo.2013.12.016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027849936"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0169-555x(01)00087-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028117700"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cageo.2015.05.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028437897"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00521-016-2746-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030713151", 
              "https://doi.org/10.1007/s00521-016-2746-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00521-016-2746-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030713151", 
              "https://doi.org/10.1007/s00521-016-2746-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12665-011-1055-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031635326", 
              "https://doi.org/10.1007/s12665-011-1055-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.eswa.2010.04.015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032464571"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3390/geosciences4030176", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032967835"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5194/nhess-13-395-2013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033892364"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5194/nhess-10-623-2010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034339710"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12665-014-3389-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035637382", 
              "https://doi.org/10.1007/s12665-014-3389-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.enggeo.2011.09.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038332921"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00521-011-0629-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039162729", 
              "https://doi.org/10.1007/s00521-011-0629-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11069-014-1245-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042512910", 
              "https://doi.org/10.1007/s11069-014-1245-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00521-013-1443-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042594802", 
              "https://doi.org/10.1007/s00521-013-1443-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10346-012-0357-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043830016", 
              "https://doi.org/10.1007/s10346-012-0357-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00254-008-1350-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044918374", 
              "https://doi.org/10.1007/s00254-008-1350-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cageo.2011.10.031", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047580513"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.geomorph.2012.01.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047934420"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-31325-7_42", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048835624", 
              "https://doi.org/10.1007/978-3-642-31325-7_42"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s1350482706002350", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049766847"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00521-012-0942-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049952031", 
              "https://doi.org/10.1007/s00521-012-0942-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10346-015-0565-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050452552", 
              "https://doi.org/10.1007/s10346-015-0565-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.eswa.2009.02.043", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050932282"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10064-011-0368-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052837436", 
              "https://doi.org/10.1007/s10064-011-0368-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/21.256541", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061121711"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1474-6670(17)62005-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086351304"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-03", 
        "datePublishedReg": "2019-03-01", 
        "description": "In this paper, an adaptive neuro-fuzzy modeling (ANFIS) is applied in order to map landslide susceptibility for a Mediterranean catchment (Peloponnese, Greece). The relationship between landslides and factors influencing their occurrence is investigated in GIS environment. Seven conditioning factors, including elevation, slope angle, profile curvature, stream density, distance to main roads, geology, and vegetation were considered in the analysis. Six ANFIS models with different membership functions were developed to generate the corresponding landslide susceptibility maps. The outputs, representing the probability level of landslide occurrence, were grouped into five classes. They were then evaluated using an independent dataset of landslide events in two different validation methods: receiver operating characteristics (ROC) analysis and success and prediction rates. The majority of the calculated area under the curve values for the two validation methods was in the range 0.70\u20130.90 indicating between fair and very good prediction accuracy for the six models. These values also showed that the prediction accuracy depends on the membership functions examined in the ANFIS modeling. Among these functions, the difference of two sigmoidally shaped (Dsigmf) and product of two sigmoidally shaped (Psigmf) presented the highest prediction accuracy.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10064-017-1125-1", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136592", 
            "issn": [
              "1435-9529", 
              "1435-9537"
            ], 
            "name": "Bulletin of Engineering Geology and the Environment", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "78"
          }
        ], 
        "name": "Adaptive neuro-fuzzy inference system (ANFIS) modeling for landslide susceptibility assessment in a Mediterranean hilly area", 
        "pagination": "1173-1187", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "811940db4193ee852c8e91ac12513519838f64ffdeef6bdbe38fdd1016b3ac46"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10064-017-1125-1"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1090739455"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10064-017-1125-1", 
          "https://app.dimensions.ai/details/publication/pub.1090739455"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T12:54", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000364_0000000364/records_72865_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs10064-017-1125-1"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10064-017-1125-1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10064-017-1125-1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10064-017-1125-1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10064-017-1125-1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    259 TRIPLES      21 PREDICATES      78 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10064-017-1125-1 schema:about anzsrc-for:01
    2 anzsrc-for:0104
    3 schema:author N9e3f895ed551428a84b3f50fe443ea15
    4 schema:citation sg:pub.10.1007/978-3-642-31325-7_42
    5 sg:pub.10.1007/s00254-008-1350-9
    6 sg:pub.10.1007/s00521-011-0629-z
    7 sg:pub.10.1007/s00521-012-0942-1
    8 sg:pub.10.1007/s00521-012-0944-z
    9 sg:pub.10.1007/s00521-013-1431-x
    10 sg:pub.10.1007/s00521-013-1443-6
    11 sg:pub.10.1007/s00521-016-2746-1
    12 sg:pub.10.1007/s10064-005-0023-0
    13 sg:pub.10.1007/s10064-011-0368-5
    14 sg:pub.10.1007/s10064-014-0607-7
    15 sg:pub.10.1007/s10064-015-0759-0
    16 sg:pub.10.1007/s10064-015-0786-x
    17 sg:pub.10.1007/s10346-010-0207-y
    18 sg:pub.10.1007/s10346-011-0283-7
    19 sg:pub.10.1007/s10346-012-0357-1
    20 sg:pub.10.1007/s10346-015-0565-6
    21 sg:pub.10.1007/s10346-015-0576-3
    22 sg:pub.10.1007/s11069-012-0381-4
    23 sg:pub.10.1007/s11069-014-1065-z
    24 sg:pub.10.1007/s11069-014-1245-x
    25 sg:pub.10.1007/s11069-014-1562-0
    26 sg:pub.10.1007/s11069-016-2523-6
    27 sg:pub.10.1007/s12665-011-1055-3
    28 sg:pub.10.1007/s12665-011-1432-y
    29 sg:pub.10.1007/s12665-014-3389-0
    30 sg:pub.10.1007/s12665-014-3829-x
    31 sg:pub.10.1023/b:nhaz.0000007202.12543.3a
    32 https://doi.org/10.1016/j.cageo.2010.10.012
    33 https://doi.org/10.1016/j.cageo.2011.10.031
    34 https://doi.org/10.1016/j.cageo.2013.12.016
    35 https://doi.org/10.1016/j.cageo.2015.05.002
    36 https://doi.org/10.1016/j.compenvurbsys.2009.12.004
    37 https://doi.org/10.1016/j.enggeo.2011.09.011
    38 https://doi.org/10.1016/j.enggeo.2015.12.013
    39 https://doi.org/10.1016/j.eswa.2009.02.043
    40 https://doi.org/10.1016/j.eswa.2010.04.015
    41 https://doi.org/10.1016/j.eswa.2010.12.083
    42 https://doi.org/10.1016/j.eswa.2010.12.167
    43 https://doi.org/10.1016/j.geomorph.2009.02.026
    44 https://doi.org/10.1016/j.geomorph.2012.01.010
    45 https://doi.org/10.1016/s0169-555x(01)00087-3
    46 https://doi.org/10.1016/s1474-6670(17)62005-6
    47 https://doi.org/10.1017/s1350482706002350
    48 https://doi.org/10.1080/17445647.2014.884022
    49 https://doi.org/10.1109/21.256541
    50 https://doi.org/10.3390/geosciences4030176
    51 https://doi.org/10.3390/ijgi3020523
    52 https://doi.org/10.5194/nhess-10-623-2010
    53 https://doi.org/10.5194/nhess-11-1927-2011
    54 https://doi.org/10.5194/nhess-13-395-2013
    55 schema:datePublished 2019-03
    56 schema:datePublishedReg 2019-03-01
    57 schema:description In this paper, an adaptive neuro-fuzzy modeling (ANFIS) is applied in order to map landslide susceptibility for a Mediterranean catchment (Peloponnese, Greece). The relationship between landslides and factors influencing their occurrence is investigated in GIS environment. Seven conditioning factors, including elevation, slope angle, profile curvature, stream density, distance to main roads, geology, and vegetation were considered in the analysis. Six ANFIS models with different membership functions were developed to generate the corresponding landslide susceptibility maps. The outputs, representing the probability level of landslide occurrence, were grouped into five classes. They were then evaluated using an independent dataset of landslide events in two different validation methods: receiver operating characteristics (ROC) analysis and success and prediction rates. The majority of the calculated area under the curve values for the two validation methods was in the range 0.70–0.90 indicating between fair and very good prediction accuracy for the six models. These values also showed that the prediction accuracy depends on the membership functions examined in the ANFIS modeling. Among these functions, the difference of two sigmoidally shaped (Dsigmf) and product of two sigmoidally shaped (Psigmf) presented the highest prediction accuracy.
    58 schema:genre research_article
    59 schema:inLanguage en
    60 schema:isAccessibleForFree false
    61 schema:isPartOf N49b64e41792b4b61a2e051aa40c53323
    62 Nb629007135da4f1e890fd6e6e2bd4c49
    63 sg:journal.1136592
    64 schema:name Adaptive neuro-fuzzy inference system (ANFIS) modeling for landslide susceptibility assessment in a Mediterranean hilly area
    65 schema:pagination 1173-1187
    66 schema:productId N11b6cf7cb589497686d55afacd43aacd
    67 N2517b776c0b04c47aab0ca1905185315
    68 Nb535b2eb752949d0947d07f9654a7e24
    69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090739455
    70 https://doi.org/10.1007/s10064-017-1125-1
    71 schema:sdDatePublished 2019-04-11T12:54
    72 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    73 schema:sdPublisher N97ae4ccda40b46e3a1b90754ffb724fc
    74 schema:url https://link.springer.com/10.1007%2Fs10064-017-1125-1
    75 sgo:license sg:explorer/license/
    76 sgo:sdDataset articles
    77 rdf:type schema:ScholarlyArticle
    78 N11b6cf7cb589497686d55afacd43aacd schema:name dimensions_id
    79 schema:value pub.1090739455
    80 rdf:type schema:PropertyValue
    81 N2517b776c0b04c47aab0ca1905185315 schema:name doi
    82 schema:value 10.1007/s10064-017-1125-1
    83 rdf:type schema:PropertyValue
    84 N45fd7954d0644e9283ec1a1033600200 rdf:first sg:person.014601213533.66
    85 rdf:rest Nafd6e3467ac44da4acb667725d8e58f8
    86 N49b64e41792b4b61a2e051aa40c53323 schema:volumeNumber 78
    87 rdf:type schema:PublicationVolume
    88 N97ae4ccda40b46e3a1b90754ffb724fc schema:name Springer Nature - SN SciGraph project
    89 rdf:type schema:Organization
    90 N9e3f895ed551428a84b3f50fe443ea15 rdf:first sg:person.016521065411.35
    91 rdf:rest N45fd7954d0644e9283ec1a1033600200
    92 Nafd6e3467ac44da4acb667725d8e58f8 rdf:first sg:person.07471103333.21
    93 rdf:rest rdf:nil
    94 Nb535b2eb752949d0947d07f9654a7e24 schema:name readcube_id
    95 schema:value 811940db4193ee852c8e91ac12513519838f64ffdeef6bdbe38fdd1016b3ac46
    96 rdf:type schema:PropertyValue
    97 Nb629007135da4f1e890fd6e6e2bd4c49 schema:issueNumber 2
    98 rdf:type schema:PublicationIssue
    99 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    100 schema:name Mathematical Sciences
    101 rdf:type schema:DefinedTerm
    102 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
    103 schema:name Statistics
    104 rdf:type schema:DefinedTerm
    105 sg:journal.1136592 schema:issn 1435-9529
    106 1435-9537
    107 schema:name Bulletin of Engineering Geology and the Environment
    108 rdf:type schema:Periodical
    109 sg:person.014601213533.66 schema:affiliation https://www.grid.ac/institutes/grid.15823.3d
    110 schema:familyName Chalkias
    111 schema:givenName Christos
    112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014601213533.66
    113 rdf:type schema:Person
    114 sg:person.016521065411.35 schema:affiliation https://www.grid.ac/institutes/grid.15823.3d
    115 schema:familyName Polykretis
    116 schema:givenName Christos
    117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016521065411.35
    118 rdf:type schema:Person
    119 sg:person.07471103333.21 schema:affiliation https://www.grid.ac/institutes/grid.412988.e
    120 schema:familyName Ferentinou
    121 schema:givenName Maria
    122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07471103333.21
    123 rdf:type schema:Person
    124 sg:pub.10.1007/978-3-642-31325-7_42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048835624
    125 https://doi.org/10.1007/978-3-642-31325-7_42
    126 rdf:type schema:CreativeWork
    127 sg:pub.10.1007/s00254-008-1350-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044918374
    128 https://doi.org/10.1007/s00254-008-1350-9
    129 rdf:type schema:CreativeWork
    130 sg:pub.10.1007/s00521-011-0629-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1039162729
    131 https://doi.org/10.1007/s00521-011-0629-z
    132 rdf:type schema:CreativeWork
    133 sg:pub.10.1007/s00521-012-0942-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049952031
    134 https://doi.org/10.1007/s00521-012-0942-1
    135 rdf:type schema:CreativeWork
    136 sg:pub.10.1007/s00521-012-0944-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1010393270
    137 https://doi.org/10.1007/s00521-012-0944-z
    138 rdf:type schema:CreativeWork
    139 sg:pub.10.1007/s00521-013-1431-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1003246532
    140 https://doi.org/10.1007/s00521-013-1431-x
    141 rdf:type schema:CreativeWork
    142 sg:pub.10.1007/s00521-013-1443-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042594802
    143 https://doi.org/10.1007/s00521-013-1443-6
    144 rdf:type schema:CreativeWork
    145 sg:pub.10.1007/s00521-016-2746-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030713151
    146 https://doi.org/10.1007/s00521-016-2746-1
    147 rdf:type schema:CreativeWork
    148 sg:pub.10.1007/s10064-005-0023-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004521021
    149 https://doi.org/10.1007/s10064-005-0023-0
    150 rdf:type schema:CreativeWork
    151 sg:pub.10.1007/s10064-011-0368-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052837436
    152 https://doi.org/10.1007/s10064-011-0368-5
    153 rdf:type schema:CreativeWork
    154 sg:pub.10.1007/s10064-014-0607-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004324851
    155 https://doi.org/10.1007/s10064-014-0607-7
    156 rdf:type schema:CreativeWork
    157 sg:pub.10.1007/s10064-015-0759-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019626648
    158 https://doi.org/10.1007/s10064-015-0759-0
    159 rdf:type schema:CreativeWork
    160 sg:pub.10.1007/s10064-015-0786-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1017609195
    161 https://doi.org/10.1007/s10064-015-0786-x
    162 rdf:type schema:CreativeWork
    163 sg:pub.10.1007/s10346-010-0207-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1001211931
    164 https://doi.org/10.1007/s10346-010-0207-y
    165 rdf:type schema:CreativeWork
    166 sg:pub.10.1007/s10346-011-0283-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014324470
    167 https://doi.org/10.1007/s10346-011-0283-7
    168 rdf:type schema:CreativeWork
    169 sg:pub.10.1007/s10346-012-0357-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043830016
    170 https://doi.org/10.1007/s10346-012-0357-1
    171 rdf:type schema:CreativeWork
    172 sg:pub.10.1007/s10346-015-0565-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050452552
    173 https://doi.org/10.1007/s10346-015-0565-6
    174 rdf:type schema:CreativeWork
    175 sg:pub.10.1007/s10346-015-0576-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025715479
    176 https://doi.org/10.1007/s10346-015-0576-3
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1007/s11069-012-0381-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023459724
    179 https://doi.org/10.1007/s11069-012-0381-4
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1007/s11069-014-1065-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1027567675
    182 https://doi.org/10.1007/s11069-014-1065-z
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1007/s11069-014-1245-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1042512910
    185 https://doi.org/10.1007/s11069-014-1245-x
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1007/s11069-014-1562-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003051939
    188 https://doi.org/10.1007/s11069-014-1562-0
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1007/s11069-016-2523-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015212329
    191 https://doi.org/10.1007/s11069-016-2523-6
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1007/s12665-011-1055-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031635326
    194 https://doi.org/10.1007/s12665-011-1055-3
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1007/s12665-011-1432-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1008708064
    197 https://doi.org/10.1007/s12665-011-1432-y
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1007/s12665-014-3389-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035637382
    200 https://doi.org/10.1007/s12665-014-3389-0
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1007/s12665-014-3829-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1025941572
    203 https://doi.org/10.1007/s12665-014-3829-x
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1023/b:nhaz.0000007202.12543.3a schema:sameAs https://app.dimensions.ai/details/publication/pub.1007389590
    206 https://doi.org/10.1023/b:nhaz.0000007202.12543.3a
    207 rdf:type schema:CreativeWork
    208 https://doi.org/10.1016/j.cageo.2010.10.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008087502
    209 rdf:type schema:CreativeWork
    210 https://doi.org/10.1016/j.cageo.2011.10.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047580513
    211 rdf:type schema:CreativeWork
    212 https://doi.org/10.1016/j.cageo.2013.12.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027849936
    213 rdf:type schema:CreativeWork
    214 https://doi.org/10.1016/j.cageo.2015.05.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028437897
    215 rdf:type schema:CreativeWork
    216 https://doi.org/10.1016/j.compenvurbsys.2009.12.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026136858
    217 rdf:type schema:CreativeWork
    218 https://doi.org/10.1016/j.enggeo.2011.09.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038332921
    219 rdf:type schema:CreativeWork
    220 https://doi.org/10.1016/j.enggeo.2015.12.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002402837
    221 rdf:type schema:CreativeWork
    222 https://doi.org/10.1016/j.eswa.2009.02.043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050932282
    223 rdf:type schema:CreativeWork
    224 https://doi.org/10.1016/j.eswa.2010.04.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032464571
    225 rdf:type schema:CreativeWork
    226 https://doi.org/10.1016/j.eswa.2010.12.083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026416714
    227 rdf:type schema:CreativeWork
    228 https://doi.org/10.1016/j.eswa.2010.12.167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003712455
    229 rdf:type schema:CreativeWork
    230 https://doi.org/10.1016/j.geomorph.2009.02.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027114246
    231 rdf:type schema:CreativeWork
    232 https://doi.org/10.1016/j.geomorph.2012.01.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047934420
    233 rdf:type schema:CreativeWork
    234 https://doi.org/10.1016/s0169-555x(01)00087-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028117700
    235 rdf:type schema:CreativeWork
    236 https://doi.org/10.1016/s1474-6670(17)62005-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086351304
    237 rdf:type schema:CreativeWork
    238 https://doi.org/10.1017/s1350482706002350 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049766847
    239 rdf:type schema:CreativeWork
    240 https://doi.org/10.1080/17445647.2014.884022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007681559
    241 rdf:type schema:CreativeWork
    242 https://doi.org/10.1109/21.256541 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061121711
    243 rdf:type schema:CreativeWork
    244 https://doi.org/10.3390/geosciences4030176 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032967835
    245 rdf:type schema:CreativeWork
    246 https://doi.org/10.3390/ijgi3020523 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008806825
    247 rdf:type schema:CreativeWork
    248 https://doi.org/10.5194/nhess-10-623-2010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034339710
    249 rdf:type schema:CreativeWork
    250 https://doi.org/10.5194/nhess-11-1927-2011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020670293
    251 rdf:type schema:CreativeWork
    252 https://doi.org/10.5194/nhess-13-395-2013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033892364
    253 rdf:type schema:CreativeWork
    254 https://www.grid.ac/institutes/grid.15823.3d schema:alternateName Harokopio University
    255 schema:name Department of Geography, Harokopio University, El. Venizelou 70, 17671, Athens, Greece
    256 rdf:type schema:Organization
    257 https://www.grid.ac/institutes/grid.412988.e schema:alternateName University of Johannesburg
    258 schema:name Department of Civil Engineering Science, University of Johannesburg, Auckland Park Kingsway Campus, 2006, Auckland, South Africa
    259 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...