Prediction and optimization of back-break and rock fragmentation using an artificial neural network and a bee colony algorithm View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-01-30

AUTHORS

Ebrahim Ebrahimi, Masoud Monjezi, Mohammad Reza Khalesi, Danial Jahed Armaghani

ABSTRACT

In blasting works, the aim is to provide proper rock fragmentation and to avoid undesirable environmental impacts such as back-break. Therefore, predicting fragmentation and back-break is a significant step in achieving a technically and economically successful outcome. In this paper, considering the robustness of artificial intelligence methods utilized in engineering problems, an artificial neural network (ANN) was applied to predict rock fragmentation and back-break; an artificial bee colony (ABC) algorithm was also utilized to optimize the blasting pattern parameters. In this regard, blasting parameters, including burden, spacing, stemming length, hole length and powder factor, as well as back-break and fragmentation were collected at the Anguran mine in Iran. Root mean square error (RMSE) values equal to 2.76 and 0.53 for rock fragmentation and back-break, respectively, reveal the high reliability of the ANN model. In addition, ABC algorithm results suggest values of 29 cm and 3.25 m for fragmentation and back-break, respectively. For comparison purposes, an empirical model (Kuz-Ram) was performed to predict the mean fragment size in the Anguran mine. A mean fragment size of 33.5 cm shows the ABC algorithm can optimize rock fragmentation with a high degree of accuracy. More... »

PAGES

27-36

References to SciGraph publications

  • 2012-06-12. Prediction of Backbreak in Open-Pit Blasting Operations Using the Machine Learning Method in ROCK MECHANICS AND ROCK ENGINEERING
  • 2012-11-09. Multiple regression, ANN and ANFIS models for prediction of backbreak in the open pit blasting in ENGINEERING WITH COMPUTERS
  • 2010-03-10. Prediction of rock fragmentation due to blasting using artificial neural network in ENGINEERING WITH COMPUTERS
  • 2013-11-27. Blasting-induced flyrock and ground vibration prediction through an expert artificial neural network based on particle swarm optimization in ARABIAN JOURNAL OF GEOSCIENCES
  • 2014-10-18. An adaptive neuro-fuzzy inference system for predicting unconfined compressive strength and Young’s modulus: a study on Main Range granite in BULLETIN OF ENGINEERING GEOLOGY AND THE ENVIRONMENT
  • 2010-08-11. Prediction of flyrock and backbreak in open pit blasting operation: a neuro-genetic approach in ARABIAN JOURNAL OF GEOSCIENCES
  • 2014-03-14. Flyrock in bench blasting: a comprehensive review in BULLETIN OF ENGINEERING GEOLOGY AND THE ENVIRONMENT
  • 2014-09-04. Ground vibration prediction in quarry blasting through an artificial neural network optimized by imperialist competitive algorithm in BULLETIN OF ENGINEERING GEOLOGY AND THE ENVIRONMENT
  • 2013-11-16. Investigation of blast-induced ground vibrations in the Tülü boron open pit mine in BULLETIN OF ENGINEERING GEOLOGY AND THE ENVIRONMENT
  • 2013-09-01. Artificial Neural Network as a Tool for Backbreak Prediction in GEOTECHNICAL AND GEOLOGICAL ENGINEERING
  • 2014-07-10. Prediction of the unconfined compressive strength of soft rocks: a PSO-based ANN approach in BULLETIN OF ENGINEERING GEOLOGY AND THE ENVIRONMENT
  • 2012-02-18. Evaluation and prediction of blast-induced ground vibration at Shur River Dam, Iran, by artificial neural network in NEURAL COMPUTING AND APPLICATIONS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10064-015-0720-2

    DOI

    http://dx.doi.org/10.1007/s10064-015-0720-2

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1042960605


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Earth Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0403", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Geology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0905", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Civil Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Mining, Faculty of Engineering, Tarbiat Modares University, 14115-143, Tehran, Iran", 
              "id": "http://www.grid.ac/institutes/grid.412266.5", 
              "name": [
                "Department of Mining, Faculty of Engineering, Tarbiat Modares University, 14115-143, Tehran, Iran"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ebrahimi", 
            "givenName": "Ebrahim", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Mining, Faculty of Engineering, Tarbiat Modares University, 14115-143, Tehran, Iran", 
              "id": "http://www.grid.ac/institutes/grid.412266.5", 
              "name": [
                "Department of Mining, Faculty of Engineering, Tarbiat Modares University, 14115-143, Tehran, Iran"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Monjezi", 
            "givenName": "Masoud", 
            "id": "sg:person.07467143352.09", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07467143352.09"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Mining, Faculty of Engineering, Tarbiat Modares University, 14115-143, Tehran, Iran", 
              "id": "http://www.grid.ac/institutes/grid.412266.5", 
              "name": [
                "Department of Mining, Faculty of Engineering, Tarbiat Modares University, 14115-143, Tehran, Iran"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Khalesi", 
            "givenName": "Mohammad Reza", 
            "id": "sg:person.016703563066.87", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016703563066.87"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Geotechnics and Transportation, Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia", 
              "id": "http://www.grid.ac/institutes/grid.410877.d", 
              "name": [
                "Department of Geotechnics and Transportation, Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Armaghani", 
            "givenName": "Danial Jahed", 
            "id": "sg:person.01156522364.57", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01156522364.57"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00366-012-0298-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042514146", 
              "https://doi.org/10.1007/s00366-012-0298-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10064-014-0657-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016555821", 
              "https://doi.org/10.1007/s10064-014-0657-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12517-013-1174-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038954491", 
              "https://doi.org/10.1007/s12517-013-1174-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10064-014-0638-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012839375", 
              "https://doi.org/10.1007/s10064-014-0638-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00603-012-0269-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019630606", 
              "https://doi.org/10.1007/s00603-012-0269-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10064-014-0687-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038842643", 
              "https://doi.org/10.1007/s10064-014-0687-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12517-010-0185-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044029557", 
              "https://doi.org/10.1007/s12517-010-0185-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10064-014-0588-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002537991", 
              "https://doi.org/10.1007/s10064-014-0588-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10064-013-0521-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032417742", 
              "https://doi.org/10.1007/s10064-013-0521-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10706-013-9686-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034611842", 
              "https://doi.org/10.1007/s10706-013-9686-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00521-012-0856-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006773113", 
              "https://doi.org/10.1007/s00521-012-0856-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00366-010-0187-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035214031", 
              "https://doi.org/10.1007/s00366-010-0187-5"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2015-01-30", 
        "datePublishedReg": "2015-01-30", 
        "description": "In blasting works, the aim is to provide proper rock fragmentation and to avoid undesirable environmental impacts such as back-break. Therefore, predicting fragmentation and back-break is a significant step in achieving a technically and economically successful outcome. In this paper, considering the robustness of artificial intelligence methods utilized in engineering problems, an artificial neural network (ANN) was applied to predict rock fragmentation and back-break; an artificial bee colony (ABC) algorithm was also utilized to optimize the blasting pattern parameters. In this regard, blasting parameters, including burden, spacing, stemming length, hole length and powder factor, as well as back-break and fragmentation were collected at the Anguran mine in Iran. Root mean square error (RMSE) values equal to 2.76 and 0.53 for rock fragmentation and back-break, respectively, reveal the high reliability of the ANN model. In addition, ABC algorithm results suggest values of 29\u00a0cm and 3.25\u00a0m for fragmentation and back-break, respectively. For comparison purposes, an empirical model (Kuz-Ram) was performed to predict the mean fragment size in the Anguran mine. A mean fragment size of 33.5\u00a0cm shows the ABC algorithm can optimize rock fragmentation with a high degree of accuracy.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s10064-015-0720-2", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136592", 
            "issn": [
              "1435-9529", 
              "1435-9537"
            ], 
            "name": "Bulletin of Engineering Geology and the Environment", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "75"
          }
        ], 
        "keywords": [
          "artificial neural network", 
          "bee colony algorithm", 
          "neural network", 
          "colony algorithm", 
          "artificial intelligence methods", 
          "artificial bee colony algorithm", 
          "intelligence methods", 
          "ABC algorithm", 
          "ANN model", 
          "algorithm results", 
          "mean square error values", 
          "algorithm", 
          "proper rock fragmentation", 
          "engineering problems", 
          "square error values", 
          "network", 
          "root mean square error (RMSE) values", 
          "error values", 
          "high reliability", 
          "significant step", 
          "powder factor", 
          "robustness", 
          "pattern parameters", 
          "comparison purposes", 
          "accuracy", 
          "optimization", 
          "model", 
          "reliability", 
          "rock fragmentation", 
          "work", 
          "step", 
          "method", 
          "high degree", 
          "undesirable environmental impacts", 
          "parameters", 
          "prediction", 
          "mine", 
          "size", 
          "results", 
          "purpose", 
          "burden", 
          "empirical model", 
          "values", 
          "addition", 
          "impact", 
          "degree", 
          "regard", 
          "length", 
          "aim", 
          "environmental impacts", 
          "fragmentation", 
          "fragment size", 
          "factors", 
          "successful outcome", 
          "spacing", 
          "outcomes", 
          "Iran", 
          "hole length", 
          "mean fragment size", 
          "paper", 
          "problem", 
          "blasting pattern parameters", 
          "Anguran mine", 
          "ABC algorithm results"
        ], 
        "name": "Prediction and optimization of back-break and rock fragmentation using an artificial neural network and a bee colony algorithm", 
        "pagination": "27-36", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1042960605"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10064-015-0720-2"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10064-015-0720-2", 
          "https://app.dimensions.ai/details/publication/pub.1042960605"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:36", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_653.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s10064-015-0720-2"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10064-015-0720-2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10064-015-0720-2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10064-015-0720-2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10064-015-0720-2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    201 TRIPLES      22 PREDICATES      103 URIs      81 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10064-015-0720-2 schema:about anzsrc-for:04
    2 anzsrc-for:0403
    3 anzsrc-for:09
    4 anzsrc-for:0905
    5 schema:author N1af7235b781c44538a0ebdd6f547ca41
    6 schema:citation sg:pub.10.1007/s00366-010-0187-5
    7 sg:pub.10.1007/s00366-012-0298-2
    8 sg:pub.10.1007/s00521-012-0856-y
    9 sg:pub.10.1007/s00603-012-0269-3
    10 sg:pub.10.1007/s10064-013-0521-4
    11 sg:pub.10.1007/s10064-014-0588-6
    12 sg:pub.10.1007/s10064-014-0638-0
    13 sg:pub.10.1007/s10064-014-0657-x
    14 sg:pub.10.1007/s10064-014-0687-4
    15 sg:pub.10.1007/s10706-013-9686-7
    16 sg:pub.10.1007/s12517-010-0185-3
    17 sg:pub.10.1007/s12517-013-1174-0
    18 schema:datePublished 2015-01-30
    19 schema:datePublishedReg 2015-01-30
    20 schema:description In blasting works, the aim is to provide proper rock fragmentation and to avoid undesirable environmental impacts such as back-break. Therefore, predicting fragmentation and back-break is a significant step in achieving a technically and economically successful outcome. In this paper, considering the robustness of artificial intelligence methods utilized in engineering problems, an artificial neural network (ANN) was applied to predict rock fragmentation and back-break; an artificial bee colony (ABC) algorithm was also utilized to optimize the blasting pattern parameters. In this regard, blasting parameters, including burden, spacing, stemming length, hole length and powder factor, as well as back-break and fragmentation were collected at the Anguran mine in Iran. Root mean square error (RMSE) values equal to 2.76 and 0.53 for rock fragmentation and back-break, respectively, reveal the high reliability of the ANN model. In addition, ABC algorithm results suggest values of 29 cm and 3.25 m for fragmentation and back-break, respectively. For comparison purposes, an empirical model (Kuz-Ram) was performed to predict the mean fragment size in the Anguran mine. A mean fragment size of 33.5 cm shows the ABC algorithm can optimize rock fragmentation with a high degree of accuracy.
    21 schema:genre article
    22 schema:inLanguage en
    23 schema:isAccessibleForFree false
    24 schema:isPartOf N433cc9a32afc4cb6ba6a6bf7de19ed6b
    25 N8007a97f67e8491b95e9f40790840f6e
    26 sg:journal.1136592
    27 schema:keywords ABC algorithm
    28 ABC algorithm results
    29 ANN model
    30 Anguran mine
    31 Iran
    32 accuracy
    33 addition
    34 aim
    35 algorithm
    36 algorithm results
    37 artificial bee colony algorithm
    38 artificial intelligence methods
    39 artificial neural network
    40 bee colony algorithm
    41 blasting pattern parameters
    42 burden
    43 colony algorithm
    44 comparison purposes
    45 degree
    46 empirical model
    47 engineering problems
    48 environmental impacts
    49 error values
    50 factors
    51 fragment size
    52 fragmentation
    53 high degree
    54 high reliability
    55 hole length
    56 impact
    57 intelligence methods
    58 length
    59 mean fragment size
    60 mean square error values
    61 method
    62 mine
    63 model
    64 network
    65 neural network
    66 optimization
    67 outcomes
    68 paper
    69 parameters
    70 pattern parameters
    71 powder factor
    72 prediction
    73 problem
    74 proper rock fragmentation
    75 purpose
    76 regard
    77 reliability
    78 results
    79 robustness
    80 rock fragmentation
    81 root mean square error (RMSE) values
    82 significant step
    83 size
    84 spacing
    85 square error values
    86 step
    87 successful outcome
    88 undesirable environmental impacts
    89 values
    90 work
    91 schema:name Prediction and optimization of back-break and rock fragmentation using an artificial neural network and a bee colony algorithm
    92 schema:pagination 27-36
    93 schema:productId N746c71f0359143e08f724791ce1a6a02
    94 N85b136849f0348a1aebda5c769bef46a
    95 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042960605
    96 https://doi.org/10.1007/s10064-015-0720-2
    97 schema:sdDatePublished 2022-01-01T18:36
    98 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    99 schema:sdPublisher Nd2eccdd277164f7e8550514b8006eb94
    100 schema:url https://doi.org/10.1007/s10064-015-0720-2
    101 sgo:license sg:explorer/license/
    102 sgo:sdDataset articles
    103 rdf:type schema:ScholarlyArticle
    104 N1af7235b781c44538a0ebdd6f547ca41 rdf:first N62c31091ca8e4132bdb92047569ff5d9
    105 rdf:rest Ne9fe11dfcd3844388878cfb32ccf2d5a
    106 N433cc9a32afc4cb6ba6a6bf7de19ed6b schema:issueNumber 1
    107 rdf:type schema:PublicationIssue
    108 N62c31091ca8e4132bdb92047569ff5d9 schema:affiliation grid-institutes:grid.412266.5
    109 schema:familyName Ebrahimi
    110 schema:givenName Ebrahim
    111 rdf:type schema:Person
    112 N746c71f0359143e08f724791ce1a6a02 schema:name doi
    113 schema:value 10.1007/s10064-015-0720-2
    114 rdf:type schema:PropertyValue
    115 N8007a97f67e8491b95e9f40790840f6e schema:volumeNumber 75
    116 rdf:type schema:PublicationVolume
    117 N85b136849f0348a1aebda5c769bef46a schema:name dimensions_id
    118 schema:value pub.1042960605
    119 rdf:type schema:PropertyValue
    120 N950ee86a55944243ba068f48c58977e0 rdf:first sg:person.016703563066.87
    121 rdf:rest Nfd69e64f529e41789d71d4b7cf9a503b
    122 Nd2eccdd277164f7e8550514b8006eb94 schema:name Springer Nature - SN SciGraph project
    123 rdf:type schema:Organization
    124 Ne9fe11dfcd3844388878cfb32ccf2d5a rdf:first sg:person.07467143352.09
    125 rdf:rest N950ee86a55944243ba068f48c58977e0
    126 Nfd69e64f529e41789d71d4b7cf9a503b rdf:first sg:person.01156522364.57
    127 rdf:rest rdf:nil
    128 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
    129 schema:name Earth Sciences
    130 rdf:type schema:DefinedTerm
    131 anzsrc-for:0403 schema:inDefinedTermSet anzsrc-for:
    132 schema:name Geology
    133 rdf:type schema:DefinedTerm
    134 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    135 schema:name Engineering
    136 rdf:type schema:DefinedTerm
    137 anzsrc-for:0905 schema:inDefinedTermSet anzsrc-for:
    138 schema:name Civil Engineering
    139 rdf:type schema:DefinedTerm
    140 sg:journal.1136592 schema:issn 1435-9529
    141 1435-9537
    142 schema:name Bulletin of Engineering Geology and the Environment
    143 schema:publisher Springer Nature
    144 rdf:type schema:Periodical
    145 sg:person.01156522364.57 schema:affiliation grid-institutes:grid.410877.d
    146 schema:familyName Armaghani
    147 schema:givenName Danial Jahed
    148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01156522364.57
    149 rdf:type schema:Person
    150 sg:person.016703563066.87 schema:affiliation grid-institutes:grid.412266.5
    151 schema:familyName Khalesi
    152 schema:givenName Mohammad Reza
    153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016703563066.87
    154 rdf:type schema:Person
    155 sg:person.07467143352.09 schema:affiliation grid-institutes:grid.412266.5
    156 schema:familyName Monjezi
    157 schema:givenName Masoud
    158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07467143352.09
    159 rdf:type schema:Person
    160 sg:pub.10.1007/s00366-010-0187-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035214031
    161 https://doi.org/10.1007/s00366-010-0187-5
    162 rdf:type schema:CreativeWork
    163 sg:pub.10.1007/s00366-012-0298-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042514146
    164 https://doi.org/10.1007/s00366-012-0298-2
    165 rdf:type schema:CreativeWork
    166 sg:pub.10.1007/s00521-012-0856-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1006773113
    167 https://doi.org/10.1007/s00521-012-0856-y
    168 rdf:type schema:CreativeWork
    169 sg:pub.10.1007/s00603-012-0269-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019630606
    170 https://doi.org/10.1007/s00603-012-0269-3
    171 rdf:type schema:CreativeWork
    172 sg:pub.10.1007/s10064-013-0521-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032417742
    173 https://doi.org/10.1007/s10064-013-0521-4
    174 rdf:type schema:CreativeWork
    175 sg:pub.10.1007/s10064-014-0588-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002537991
    176 https://doi.org/10.1007/s10064-014-0588-6
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1007/s10064-014-0638-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012839375
    179 https://doi.org/10.1007/s10064-014-0638-0
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1007/s10064-014-0657-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1016555821
    182 https://doi.org/10.1007/s10064-014-0657-x
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1007/s10064-014-0687-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038842643
    185 https://doi.org/10.1007/s10064-014-0687-4
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1007/s10706-013-9686-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034611842
    188 https://doi.org/10.1007/s10706-013-9686-7
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1007/s12517-010-0185-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044029557
    191 https://doi.org/10.1007/s12517-010-0185-3
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1007/s12517-013-1174-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038954491
    194 https://doi.org/10.1007/s12517-013-1174-0
    195 rdf:type schema:CreativeWork
    196 grid-institutes:grid.410877.d schema:alternateName Department of Geotechnics and Transportation, Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia
    197 schema:name Department of Geotechnics and Transportation, Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia
    198 rdf:type schema:Organization
    199 grid-institutes:grid.412266.5 schema:alternateName Department of Mining, Faculty of Engineering, Tarbiat Modares University, 14115-143, Tehran, Iran
    200 schema:name Department of Mining, Faculty of Engineering, Tarbiat Modares University, 14115-143, Tehran, Iran
    201 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...