Ground vibration prediction in quarry blasting through an artificial neural network optimized by imperialist competitive algorithm View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-09-04

AUTHORS

Mohsen Hajihassani, Danial Jahed Armaghani, Aminaton Marto, Edy Tonnizam Mohamad

ABSTRACT

This paper presents a new hybrid artificial neural network (ANN) optimized by imperialist competitive algorithm (ICA) to predict peak particle velocity (PPV) resulting from quarry blasting. For this purpose, 95 blasting works were precisely monitored in a granite quarry site in Malaysia and PPV values were accurately recorded in each operation. Furthermore, the most influential parameters on PPV were measured and used to train the ICA-ANN model. Considering the measured data from the granite quarry site, a new empirical equation was developed to predict PPV. For comparison, a pre-developed ANN model was developed for PPV prediction. The results demonstrated that the proposed ICA-ANN model is able to predict blasting-induced PPV better than other presented techniques. More... »

PAGES

873-886

References to SciGraph publications

  • 2007-06-19. The analysis of ground vibrations induced by bench blasting at Akyol quarry and practical blasting charts in ENVIRONMENTAL EARTH SCIENCES
  • 2002-02. Analysis of ground vibrations caused by bench blasting at Can Open-pit Lignite Mine in Turkey in ENVIRONMENTAL EARTH SCIENCES
  • 2013-11-27. Blasting-induced flyrock and ground vibration prediction through an expert artificial neural network based on particle swarm optimization in ARABIAN JOURNAL OF GEOSCIENCES
  • 2007-12-05. Prediction of ground vibrations resulting from the blasting operations in an open-pit mine by adaptive neuro-fuzzy inference system in ENVIRONMENTAL EARTH SCIENCES
  • 2005-06. An intelligent approach to prediction and control ground vibration in mines in GEOTECHNICAL AND GEOLOGICAL ENGINEERING
  • 2010-07-07. Intelligent systems for ground vibration measurement: a comparative study in ENGINEERING WITH COMPUTERS
  • 2009-10-07. Prediction of blast-induced air overpressure using support vector machine in ARABIAN JOURNAL OF GEOSCIENCES
  • 2010-05-01. Prediction of environmental impacts of quarry blasting operation using fuzzy logic in ENVIRONMENTAL MONITORING AND ASSESSMENT
  • 2012-07-03. Prediction of unconfined compressive strength of carbonate rocks using artificial neural networks in ENVIRONMENTAL EARTH SCIENCES
  • 2013-11-16. Investigation of blast-induced ground vibrations in the Tülü boron open pit mine in BULLETIN OF ENGINEERING GEOLOGY AND THE ENVIRONMENT
  • 1993. Statistical aspects of neural networks in NETWORKS AND CHAOS — STATISTICAL AND PROBABILISTIC ASPECTS
  • 2008-01-01. Colonial Competitive Algorithm as a Tool for Nash Equilibrium Point Achievement in COMPUTATIONAL SCIENCE AND ITS APPLICATIONS – ICCSA 2008
  • 2002-03. Environmentalism and Natural Aggregate Mining in NATURAL RESOURCES RESEARCH
  • 2007-03-02. An ant colony optimization algorithm for continuous optimization: application to feed-forward neural network training in NEURAL COMPUTING AND APPLICATIONS
  • 2014-03-30. Influence of depth and geological structure on the transmission of blast vibrations in BULLETIN OF ENGINEERING GEOLOGY AND THE ENVIRONMENT
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10064-014-0657-x

    DOI

    http://dx.doi.org/10.1007/s10064-014-0657-x

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1016555821


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Earth Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0403", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Geology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0905", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Civil Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Construction Research Alliance, Universiti Teknologi Malaysia, UTM Skudai, 81310, Johor, Malaysia", 
              "id": "http://www.grid.ac/institutes/grid.410877.d", 
              "name": [
                "Construction Research Alliance, Universiti Teknologi Malaysia, UTM Skudai, 81310, Johor, Malaysia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hajihassani", 
            "givenName": "Mohsen", 
            "id": "sg:person.01213305202.05", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01213305202.05"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Faculty of Civil Engineering, Department of Geotechnics and Transportation, Universiti Teknologi Malaysia, UTM Skudai, 81310, Johor, Malaysia", 
              "id": "http://www.grid.ac/institutes/grid.410877.d", 
              "name": [
                "Faculty of Civil Engineering, Department of Geotechnics and Transportation, Universiti Teknologi Malaysia, UTM Skudai, 81310, Johor, Malaysia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jahed Armaghani", 
            "givenName": "Danial", 
            "id": "sg:person.012214152011.74", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012214152011.74"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Faculty of Civil Engineering, Department of Geotechnics and Transportation, Universiti Teknologi Malaysia, UTM Skudai, 81310, Johor, Malaysia", 
              "id": "http://www.grid.ac/institutes/grid.410877.d", 
              "name": [
                "Faculty of Civil Engineering, Department of Geotechnics and Transportation, Universiti Teknologi Malaysia, UTM Skudai, 81310, Johor, Malaysia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Marto", 
            "givenName": "Aminaton", 
            "id": "sg:person.01200512774.84", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200512774.84"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Faculty of Civil Engineering, Department of Geotechnics and Transportation, Universiti Teknologi Malaysia, UTM Skudai, 81310, Johor, Malaysia", 
              "id": "http://www.grid.ac/institutes/grid.410877.d", 
              "name": [
                "Faculty of Civil Engineering, Department of Geotechnics and Transportation, Universiti Teknologi Malaysia, UTM Skudai, 81310, Johor, Malaysia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tonnizam Mohamad", 
            "givenName": "Edy", 
            "id": "sg:person.010532067637.20", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010532067637.20"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s12517-009-0092-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030978164", 
              "https://doi.org/10.1007/s12517-009-0092-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10661-010-1470-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027134704", 
              "https://doi.org/10.1007/s10661-010-1470-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1014283519471", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009565047", 
              "https://doi.org/10.1023/a:1014283519471"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12665-012-1783-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017168196", 
              "https://doi.org/10.1007/s12665-012-1783-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4899-3099-6_2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1089745563", 
              "https://doi.org/10.1007/978-1-4899-3099-6_2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12517-013-1174-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038954491", 
              "https://doi.org/10.1007/s12517-013-1174-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10064-013-0521-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032417742", 
              "https://doi.org/10.1007/s10064-013-0521-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00254-007-1143-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041344277", 
              "https://doi.org/10.1007/s00254-007-1143-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10064-014-0595-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010903875", 
              "https://doi.org/10.1007/s10064-014-0595-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00521-007-0084-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046650841", 
              "https://doi.org/10.1007/s00521-007-0084-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00254-007-0859-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049932947", 
              "https://doi.org/10.1007/s00254-007-0859-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00254-001-0446-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038756978", 
              "https://doi.org/10.1007/s00254-001-0446-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-69848-7_55", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035284691", 
              "https://doi.org/10.1007/978-3-540-69848-7_55"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00366-010-0193-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044004182", 
              "https://doi.org/10.1007/s00366-010-0193-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10706-004-7068-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029378913", 
              "https://doi.org/10.1007/s10706-004-7068-x"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2014-09-04", 
        "datePublishedReg": "2014-09-04", 
        "description": "This paper presents a new hybrid artificial neural network (ANN) optimized by imperialist competitive algorithm (ICA) to predict peak particle velocity (PPV) resulting from quarry blasting. For this purpose, 95 blasting works were precisely monitored in a granite quarry site in Malaysia and PPV values were accurately recorded in each operation. Furthermore, the most influential parameters on PPV were measured and used to train the ICA-ANN model. Considering the measured data from the granite quarry site, a new empirical equation was developed to predict PPV. For comparison, a pre-developed ANN model was developed for PPV prediction. The results demonstrated that the proposed ICA-ANN model is able to predict blasting-induced PPV better than other presented techniques.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s10064-014-0657-x", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136592", 
            "issn": [
              "1435-9529", 
              "1435-9537"
            ], 
            "name": "Bulletin of Engineering Geology and the Environment", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "74"
          }
        ], 
        "keywords": [
          "artificial neural network", 
          "imperialist competitive algorithm", 
          "peak particle velocity", 
          "granite quarry site", 
          "ICA-ANN model", 
          "neural network", 
          "new hybrid artificial neural networks", 
          "competitive algorithm", 
          "hybrid artificial neural network", 
          "blast-induced peak particle velocity", 
          "pre-developed ANN model", 
          "ground vibration prediction", 
          "ANN model", 
          "vibration prediction", 
          "particle velocity", 
          "algorithm", 
          "PPV prediction", 
          "presented technique", 
          "blasting works", 
          "network", 
          "influential parameters", 
          "new empirical equation", 
          "quarry sites", 
          "empirical equation", 
          "model", 
          "PPV values", 
          "velocity", 
          "operation", 
          "prediction", 
          "technique", 
          "quarry", 
          "work", 
          "equations", 
          "parameters", 
          "data", 
          "purpose", 
          "results", 
          "comparison", 
          "values", 
          "sites", 
          "Malaysia", 
          "paper"
        ], 
        "name": "Ground vibration prediction in quarry blasting through an artificial neural network optimized by imperialist competitive algorithm", 
        "pagination": "873-886", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1016555821"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10064-014-0657-x"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10064-014-0657-x", 
          "https://app.dimensions.ai/details/publication/pub.1016555821"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-12-01T19:30", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_617.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s10064-014-0657-x"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10064-014-0657-x'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10064-014-0657-x'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10064-014-0657-x'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10064-014-0657-x'


     

    This table displays all metadata directly associated to this object as RDF triples.

    191 TRIPLES      22 PREDICATES      84 URIs      59 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10064-014-0657-x schema:about anzsrc-for:04
    2 anzsrc-for:0403
    3 anzsrc-for:09
    4 anzsrc-for:0905
    5 schema:author N3ac16f12df9e45eabb2fe56cc280cb49
    6 schema:citation sg:pub.10.1007/978-1-4899-3099-6_2
    7 sg:pub.10.1007/978-3-540-69848-7_55
    8 sg:pub.10.1007/s00254-001-0446-2
    9 sg:pub.10.1007/s00254-007-0859-7
    10 sg:pub.10.1007/s00254-007-1143-6
    11 sg:pub.10.1007/s00366-010-0193-7
    12 sg:pub.10.1007/s00521-007-0084-z
    13 sg:pub.10.1007/s10064-013-0521-4
    14 sg:pub.10.1007/s10064-014-0595-7
    15 sg:pub.10.1007/s10661-010-1470-z
    16 sg:pub.10.1007/s10706-004-7068-x
    17 sg:pub.10.1007/s12517-009-0092-7
    18 sg:pub.10.1007/s12517-013-1174-0
    19 sg:pub.10.1007/s12665-012-1783-z
    20 sg:pub.10.1023/a:1014283519471
    21 schema:datePublished 2014-09-04
    22 schema:datePublishedReg 2014-09-04
    23 schema:description This paper presents a new hybrid artificial neural network (ANN) optimized by imperialist competitive algorithm (ICA) to predict peak particle velocity (PPV) resulting from quarry blasting. For this purpose, 95 blasting works were precisely monitored in a granite quarry site in Malaysia and PPV values were accurately recorded in each operation. Furthermore, the most influential parameters on PPV were measured and used to train the ICA-ANN model. Considering the measured data from the granite quarry site, a new empirical equation was developed to predict PPV. For comparison, a pre-developed ANN model was developed for PPV prediction. The results demonstrated that the proposed ICA-ANN model is able to predict blasting-induced PPV better than other presented techniques.
    24 schema:genre article
    25 schema:inLanguage en
    26 schema:isAccessibleForFree false
    27 schema:isPartOf N6f850c69b3b1425cbc8314c92ab01165
    28 Na9968f9e61754554afa59bf51fe9b298
    29 sg:journal.1136592
    30 schema:keywords ANN model
    31 ICA-ANN model
    32 Malaysia
    33 PPV prediction
    34 PPV values
    35 algorithm
    36 artificial neural network
    37 blast-induced peak particle velocity
    38 blasting works
    39 comparison
    40 competitive algorithm
    41 data
    42 empirical equation
    43 equations
    44 granite quarry site
    45 ground vibration prediction
    46 hybrid artificial neural network
    47 imperialist competitive algorithm
    48 influential parameters
    49 model
    50 network
    51 neural network
    52 new empirical equation
    53 new hybrid artificial neural networks
    54 operation
    55 paper
    56 parameters
    57 particle velocity
    58 peak particle velocity
    59 pre-developed ANN model
    60 prediction
    61 presented technique
    62 purpose
    63 quarry
    64 quarry sites
    65 results
    66 sites
    67 technique
    68 values
    69 velocity
    70 vibration prediction
    71 work
    72 schema:name Ground vibration prediction in quarry blasting through an artificial neural network optimized by imperialist competitive algorithm
    73 schema:pagination 873-886
    74 schema:productId N1a667a3ffc554541a726ce977cf0cd23
    75 N41af561e3487468abf8ea319ed9f5351
    76 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016555821
    77 https://doi.org/10.1007/s10064-014-0657-x
    78 schema:sdDatePublished 2021-12-01T19:30
    79 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    80 schema:sdPublisher N51639d2c2cc649e48e23b5183e5e028b
    81 schema:url https://doi.org/10.1007/s10064-014-0657-x
    82 sgo:license sg:explorer/license/
    83 sgo:sdDataset articles
    84 rdf:type schema:ScholarlyArticle
    85 N1a667a3ffc554541a726ce977cf0cd23 schema:name doi
    86 schema:value 10.1007/s10064-014-0657-x
    87 rdf:type schema:PropertyValue
    88 N3ac16f12df9e45eabb2fe56cc280cb49 rdf:first sg:person.01213305202.05
    89 rdf:rest N5fb321f36e2c49278e15162d399b6756
    90 N41af561e3487468abf8ea319ed9f5351 schema:name dimensions_id
    91 schema:value pub.1016555821
    92 rdf:type schema:PropertyValue
    93 N51639d2c2cc649e48e23b5183e5e028b schema:name Springer Nature - SN SciGraph project
    94 rdf:type schema:Organization
    95 N5fb321f36e2c49278e15162d399b6756 rdf:first sg:person.012214152011.74
    96 rdf:rest Ndd256b4b3adb4724a2a2299a078c289a
    97 N6f850c69b3b1425cbc8314c92ab01165 schema:issueNumber 3
    98 rdf:type schema:PublicationIssue
    99 Na9968f9e61754554afa59bf51fe9b298 schema:volumeNumber 74
    100 rdf:type schema:PublicationVolume
    101 Ndd256b4b3adb4724a2a2299a078c289a rdf:first sg:person.01200512774.84
    102 rdf:rest Nf2bec3cfbc0d465b950249aec26e80bc
    103 Nf2bec3cfbc0d465b950249aec26e80bc rdf:first sg:person.010532067637.20
    104 rdf:rest rdf:nil
    105 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
    106 schema:name Earth Sciences
    107 rdf:type schema:DefinedTerm
    108 anzsrc-for:0403 schema:inDefinedTermSet anzsrc-for:
    109 schema:name Geology
    110 rdf:type schema:DefinedTerm
    111 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    112 schema:name Engineering
    113 rdf:type schema:DefinedTerm
    114 anzsrc-for:0905 schema:inDefinedTermSet anzsrc-for:
    115 schema:name Civil Engineering
    116 rdf:type schema:DefinedTerm
    117 sg:journal.1136592 schema:issn 1435-9529
    118 1435-9537
    119 schema:name Bulletin of Engineering Geology and the Environment
    120 schema:publisher Springer Nature
    121 rdf:type schema:Periodical
    122 sg:person.010532067637.20 schema:affiliation grid-institutes:grid.410877.d
    123 schema:familyName Tonnizam Mohamad
    124 schema:givenName Edy
    125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010532067637.20
    126 rdf:type schema:Person
    127 sg:person.01200512774.84 schema:affiliation grid-institutes:grid.410877.d
    128 schema:familyName Marto
    129 schema:givenName Aminaton
    130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200512774.84
    131 rdf:type schema:Person
    132 sg:person.01213305202.05 schema:affiliation grid-institutes:grid.410877.d
    133 schema:familyName Hajihassani
    134 schema:givenName Mohsen
    135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01213305202.05
    136 rdf:type schema:Person
    137 sg:person.012214152011.74 schema:affiliation grid-institutes:grid.410877.d
    138 schema:familyName Jahed Armaghani
    139 schema:givenName Danial
    140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012214152011.74
    141 rdf:type schema:Person
    142 sg:pub.10.1007/978-1-4899-3099-6_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089745563
    143 https://doi.org/10.1007/978-1-4899-3099-6_2
    144 rdf:type schema:CreativeWork
    145 sg:pub.10.1007/978-3-540-69848-7_55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035284691
    146 https://doi.org/10.1007/978-3-540-69848-7_55
    147 rdf:type schema:CreativeWork
    148 sg:pub.10.1007/s00254-001-0446-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038756978
    149 https://doi.org/10.1007/s00254-001-0446-2
    150 rdf:type schema:CreativeWork
    151 sg:pub.10.1007/s00254-007-0859-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049932947
    152 https://doi.org/10.1007/s00254-007-0859-7
    153 rdf:type schema:CreativeWork
    154 sg:pub.10.1007/s00254-007-1143-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041344277
    155 https://doi.org/10.1007/s00254-007-1143-6
    156 rdf:type schema:CreativeWork
    157 sg:pub.10.1007/s00366-010-0193-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044004182
    158 https://doi.org/10.1007/s00366-010-0193-7
    159 rdf:type schema:CreativeWork
    160 sg:pub.10.1007/s00521-007-0084-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1046650841
    161 https://doi.org/10.1007/s00521-007-0084-z
    162 rdf:type schema:CreativeWork
    163 sg:pub.10.1007/s10064-013-0521-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032417742
    164 https://doi.org/10.1007/s10064-013-0521-4
    165 rdf:type schema:CreativeWork
    166 sg:pub.10.1007/s10064-014-0595-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010903875
    167 https://doi.org/10.1007/s10064-014-0595-7
    168 rdf:type schema:CreativeWork
    169 sg:pub.10.1007/s10661-010-1470-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1027134704
    170 https://doi.org/10.1007/s10661-010-1470-z
    171 rdf:type schema:CreativeWork
    172 sg:pub.10.1007/s10706-004-7068-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1029378913
    173 https://doi.org/10.1007/s10706-004-7068-x
    174 rdf:type schema:CreativeWork
    175 sg:pub.10.1007/s12517-009-0092-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030978164
    176 https://doi.org/10.1007/s12517-009-0092-7
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1007/s12517-013-1174-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038954491
    179 https://doi.org/10.1007/s12517-013-1174-0
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1007/s12665-012-1783-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1017168196
    182 https://doi.org/10.1007/s12665-012-1783-z
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1023/a:1014283519471 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009565047
    185 https://doi.org/10.1023/a:1014283519471
    186 rdf:type schema:CreativeWork
    187 grid-institutes:grid.410877.d schema:alternateName Construction Research Alliance, Universiti Teknologi Malaysia, UTM Skudai, 81310, Johor, Malaysia
    188 Faculty of Civil Engineering, Department of Geotechnics and Transportation, Universiti Teknologi Malaysia, UTM Skudai, 81310, Johor, Malaysia
    189 schema:name Construction Research Alliance, Universiti Teknologi Malaysia, UTM Skudai, 81310, Johor, Malaysia
    190 Faculty of Civil Engineering, Department of Geotechnics and Transportation, Universiti Teknologi Malaysia, UTM Skudai, 81310, Johor, Malaysia
    191 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...