Differential expression of extracellular matrix proteins in senescent and young human fibroblasts: A comparative proteomics and microarray study View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-05-11

AUTHORS

Kyeong Eun Yang, Joseph Kwon, Ji-Heon Rhim, Jong Soon Choi, Seung Il Kim, Seung-Hoon Lee, Junsoo Park, Ik-Soon Jang

ABSTRACT

The extracellular matrix (ECM) provides an essential structural framework for cell attachment, proliferation, and differentiation, and undergoes progressive changes during senescence. To investigate changes in protein expression in the extracellular matrix between young and senescent fibroblasts, we compared proteomic data (LTQ-FT) with cDNA microarray results. The peptide counts from the proteomics analysis were used to evaluate the level of ECM protein expression by young cells and senescent cells, and ECM protein expression data were compared with the microarray data. After completing the comparative analysis, we grouped the genes into four categories. Class I included genes with increased expression levels in both analyses, while class IV contained genes with reduced expression in both analyses. Class II and Class III contained genes with an inconsistent expression pattern. Finally, we validated the comparative analysis results by examining the expression level of the specific gene from each category using Western blot analysis and semiquantitative RT-PCR. Our results demonstrate that comparative analysis can be used to identify differentially expressed genes. More... »

PAGES

99-106

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10059-011-0064-0

DOI

http://dx.doi.org/10.1007/s10059-011-0064-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1007456817

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/21573704


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Blotting, Western", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cellular Senescence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Extracellular Matrix Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fibroblasts", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Foreskin", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Profiling", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oligonucleotide Array Sequence Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Primary Cell Culture", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Proteomics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "RNA, Messenger", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reverse Transcriptase Polymerase Chain Reaction", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Division of Life Science, Korea Basic Science Institute, 305-333, Daejeon, Korea", 
          "id": "http://www.grid.ac/institutes/grid.410885.0", 
          "name": [
            "Division of Life Science, Korea Basic Science Institute, 305-333, Daejeon, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Kyeong Eun", 
        "id": "sg:person.01250173202.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01250173202.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Korea Basic Science Institute, Gwangju Center, 500-757, Gwangju, Korea", 
          "id": "http://www.grid.ac/institutes/grid.410885.0", 
          "name": [
            "Korea Basic Science Institute, Gwangju Center, 500-757, Gwangju, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kwon", 
        "givenName": "Joseph", 
        "id": "sg:person.0662776456.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0662776456.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, 110-799, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, 110-799, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rhim", 
        "givenName": "Ji-Heon", 
        "id": "sg:person.01370661021.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01370661021.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Graduate School of Analytical Science and Technology, Chungnam National University, 305-764, Daejeon, Korea", 
          "id": "http://www.grid.ac/institutes/grid.254230.2", 
          "name": [
            "Division of Life Science, Korea Basic Science Institute, 305-333, Daejeon, Korea", 
            "Graduate School of Analytical Science and Technology, Chungnam National University, 305-764, Daejeon, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Choi", 
        "givenName": "Jong Soon", 
        "id": "sg:person.01266030275.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01266030275.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Division of Life Science, Korea Basic Science Institute, 305-333, Daejeon, Korea", 
          "id": "http://www.grid.ac/institutes/grid.410885.0", 
          "name": [
            "Division of Life Science, Korea Basic Science Institute, 305-333, Daejeon, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Seung Il", 
        "id": "sg:person.01343712215.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01343712215.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Biological Science, Yong-In University, 449-719, Yongin, Korea", 
          "id": "http://www.grid.ac/institutes/grid.444164.7", 
          "name": [
            "Department of Biological Science, Yong-In University, 449-719, Yongin, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Seung-Hoon", 
        "id": "sg:person.016714712721.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016714712721.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Division of Biological Science and Technology, Yonsei University, 220-100, Wonju, Korea", 
          "id": "http://www.grid.ac/institutes/grid.15444.30", 
          "name": [
            "Division of Biological Science and Technology, Yonsei University, 220-100, Wonju, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Park", 
        "givenName": "Junsoo", 
        "id": "sg:person.01317510671.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01317510671.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Division of Life Science, Korea Basic Science Institute, 305-333, Daejeon, Korea", 
          "id": "http://www.grid.ac/institutes/grid.410885.0", 
          "name": [
            "Division of Life Science, Korea Basic Science Institute, 305-333, Daejeon, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jang", 
        "givenName": "Ik-Soon", 
        "id": "sg:person.01317070447.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01317070447.13"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/cdd.2008.96", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037759935", 
          "https://doi.org/10.1038/cdd.2008.96"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s004180100325", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006767287", 
          "https://doi.org/10.1007/s004180100325"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10059-009-0141-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044258272", 
          "https://doi.org/10.1007/s10059-009-0141-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncb1909", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008470674", 
          "https://doi.org/10.1038/ncb1909"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-85766-4_16", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026775855", 
          "https://doi.org/10.1007/978-0-387-85766-4_16"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-05-11", 
    "datePublishedReg": "2011-05-11", 
    "description": "The extracellular matrix (ECM) provides an essential structural framework for cell attachment, proliferation, and differentiation, and undergoes progressive changes during senescence. To investigate changes in protein expression in the extracellular matrix between young and senescent fibroblasts, we compared proteomic data (LTQ-FT) with cDNA microarray results. The peptide counts from the proteomics analysis were used to evaluate the level of ECM protein expression by young cells and senescent cells, and ECM protein expression data were compared with the microarray data. After completing the comparative analysis, we grouped the genes into four categories. Class I included genes with increased expression levels in both analyses, while class IV contained genes with reduced expression in both analyses. Class II and Class III contained genes with an inconsistent expression pattern. Finally, we validated the comparative analysis results by examining the expression level of the specific gene from each category using Western blot analysis and semiquantitative RT-PCR. Our results demonstrate that comparative analysis can be used to identify differentially expressed genes.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10059-011-0064-0", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1115754", 
        "issn": [
          "1016-8478", 
          "0219-1032"
        ], 
        "name": "Molecules and Cells", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "32"
      }
    ], 
    "keywords": [
      "extracellular matrix", 
      "inconsistent expression patterns", 
      "cDNA microarray results", 
      "protein expression data", 
      "expression levels", 
      "protein expression", 
      "extracellular matrix proteins", 
      "ECM protein expression", 
      "comparative proteomics", 
      "proteomic analysis", 
      "proteomic data", 
      "specific genes", 
      "expression patterns", 
      "microarray results", 
      "young human fibroblasts", 
      "senescent cells", 
      "expression data", 
      "differential expression", 
      "matrix proteins", 
      "Western blot analysis", 
      "genes", 
      "senescent fibroblasts", 
      "microarray studies", 
      "microarray data", 
      "young cells", 
      "semiquantitative RT-PCR", 
      "blot analysis", 
      "human fibroblasts", 
      "reduced expression", 
      "expression", 
      "comparative analysis", 
      "RT-PCR", 
      "structural framework", 
      "fibroblasts", 
      "cell attachment", 
      "cells", 
      "proteomics", 
      "senescence", 
      "protein", 
      "differentiation", 
      "class I", 
      "proliferation", 
      "peptides", 
      "levels", 
      "analysis", 
      "progressive changes", 
      "changes", 
      "class II", 
      "patterns", 
      "attachment", 
      "data", 
      "results", 
      "matrix", 
      "study", 
      "class III", 
      "categories", 
      "class IV", 
      "comparative analysis results", 
      "analysis results", 
      "framework", 
      "essential structural framework", 
      "undergoes progressive changes", 
      "ECM protein expression data"
    ], 
    "name": "Differential expression of extracellular matrix proteins in senescent and young human fibroblasts: A comparative proteomics and microarray study", 
    "pagination": "99-106", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1007456817"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10059-011-0064-0"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "21573704"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10059-011-0064-0", 
      "https://app.dimensions.ai/details/publication/pub.1007456817"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_530.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10059-011-0064-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10059-011-0064-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10059-011-0064-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10059-011-0064-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10059-011-0064-0'


 

This table displays all metadata directly associated to this object as RDF triples.

261 TRIPLES      22 PREDICATES      107 URIs      94 LITERALS      20 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10059-011-0064-0 schema:about N15789f2149da473f8a581608f4a07dfa
2 N4385c26a09f84399a9a880247be22862
3 N45d1c500f2264a839b6548b4aeaf8d29
4 N6595230228a943b59849f38b27ef3791
5 N9165c2ecff5649be80a8a111084cacca
6 Naf0132b01c074b959f40d4d3c34239b7
7 Nc3b77de342384648945f7ccc3b14077e
8 Nc785ded84c014a0bbfb774947352f267
9 Ndaba0e13ddb54ffd926d95a82af2d05b
10 Ne849a4b7b7af404fa6a095a3c2a4f15b
11 Neee9d3ec9d5449dc88ed86135908c1f2
12 Nfa735a90a088493ebf6ef75363be9305
13 Nfaa433493b864b01b67697d0aa7cef47
14 anzsrc-for:06
15 anzsrc-for:0604
16 schema:author Na2e20ce5e51740c59dfc7135ca843211
17 schema:citation sg:pub.10.1007/978-0-387-85766-4_16
18 sg:pub.10.1007/s004180100325
19 sg:pub.10.1007/s10059-009-0141-9
20 sg:pub.10.1038/cdd.2008.96
21 sg:pub.10.1038/ncb1909
22 schema:datePublished 2011-05-11
23 schema:datePublishedReg 2011-05-11
24 schema:description The extracellular matrix (ECM) provides an essential structural framework for cell attachment, proliferation, and differentiation, and undergoes progressive changes during senescence. To investigate changes in protein expression in the extracellular matrix between young and senescent fibroblasts, we compared proteomic data (LTQ-FT) with cDNA microarray results. The peptide counts from the proteomics analysis were used to evaluate the level of ECM protein expression by young cells and senescent cells, and ECM protein expression data were compared with the microarray data. After completing the comparative analysis, we grouped the genes into four categories. Class I included genes with increased expression levels in both analyses, while class IV contained genes with reduced expression in both analyses. Class II and Class III contained genes with an inconsistent expression pattern. Finally, we validated the comparative analysis results by examining the expression level of the specific gene from each category using Western blot analysis and semiquantitative RT-PCR. Our results demonstrate that comparative analysis can be used to identify differentially expressed genes.
25 schema:genre article
26 schema:inLanguage en
27 schema:isAccessibleForFree true
28 schema:isPartOf N78d4ca66d0d74b12a075f2514470dc24
29 N81dec3073d2e4042b17095fa99a12791
30 sg:journal.1115754
31 schema:keywords ECM protein expression
32 ECM protein expression data
33 RT-PCR
34 Western blot analysis
35 analysis
36 analysis results
37 attachment
38 blot analysis
39 cDNA microarray results
40 categories
41 cell attachment
42 cells
43 changes
44 class I
45 class II
46 class III
47 class IV
48 comparative analysis
49 comparative analysis results
50 comparative proteomics
51 data
52 differential expression
53 differentiation
54 essential structural framework
55 expression
56 expression data
57 expression levels
58 expression patterns
59 extracellular matrix
60 extracellular matrix proteins
61 fibroblasts
62 framework
63 genes
64 human fibroblasts
65 inconsistent expression patterns
66 levels
67 matrix
68 matrix proteins
69 microarray data
70 microarray results
71 microarray studies
72 patterns
73 peptides
74 progressive changes
75 proliferation
76 protein
77 protein expression
78 protein expression data
79 proteomic analysis
80 proteomic data
81 proteomics
82 reduced expression
83 results
84 semiquantitative RT-PCR
85 senescence
86 senescent cells
87 senescent fibroblasts
88 specific genes
89 structural framework
90 study
91 undergoes progressive changes
92 young cells
93 young human fibroblasts
94 schema:name Differential expression of extracellular matrix proteins in senescent and young human fibroblasts: A comparative proteomics and microarray study
95 schema:pagination 99-106
96 schema:productId N4ecc3a7f5e4c4787a9d211cedadb3e91
97 Nc51ec54e72f14887914cdbb43478e714
98 Ncce33872d6ca44e2b723b34b042773f8
99 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007456817
100 https://doi.org/10.1007/s10059-011-0064-0
101 schema:sdDatePublished 2022-01-01T18:24
102 schema:sdLicense https://scigraph.springernature.com/explorer/license/
103 schema:sdPublisher N963863e642c84419946e52545516536a
104 schema:url https://doi.org/10.1007/s10059-011-0064-0
105 sgo:license sg:explorer/license/
106 sgo:sdDataset articles
107 rdf:type schema:ScholarlyArticle
108 N0a165e437aa245c6b5b88d3c3e2f5224 rdf:first sg:person.01317510671.87
109 rdf:rest N628ffa8568fc40c5b3c792512013552f
110 N15789f2149da473f8a581608f4a07dfa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Reverse Transcriptase Polymerase Chain Reaction
112 rdf:type schema:DefinedTerm
113 N4385c26a09f84399a9a880247be22862 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Male
115 rdf:type schema:DefinedTerm
116 N45d1c500f2264a839b6548b4aeaf8d29 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Oligonucleotide Array Sequence Analysis
118 rdf:type schema:DefinedTerm
119 N4ecc3a7f5e4c4787a9d211cedadb3e91 schema:name doi
120 schema:value 10.1007/s10059-011-0064-0
121 rdf:type schema:PropertyValue
122 N628ffa8568fc40c5b3c792512013552f rdf:first sg:person.01317070447.13
123 rdf:rest rdf:nil
124 N6595230228a943b59849f38b27ef3791 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Primary Cell Culture
126 rdf:type schema:DefinedTerm
127 N6f09211adcb7447c82a360a057753b6b rdf:first sg:person.016714712721.78
128 rdf:rest N0a165e437aa245c6b5b88d3c3e2f5224
129 N78a922ff30a34bffa1b929846a275fc2 rdf:first sg:person.01343712215.97
130 rdf:rest N6f09211adcb7447c82a360a057753b6b
131 N78d4ca66d0d74b12a075f2514470dc24 schema:volumeNumber 32
132 rdf:type schema:PublicationVolume
133 N81dec3073d2e4042b17095fa99a12791 schema:issueNumber 1
134 rdf:type schema:PublicationIssue
135 N861376aef1f142e2a1a05d53a63fe357 rdf:first sg:person.0662776456.12
136 rdf:rest Nac5ae7a3b1e746069e8d746ac71e84c7
137 N8c06e499f6e749ca843457110c461e92 rdf:first sg:person.01266030275.44
138 rdf:rest N78a922ff30a34bffa1b929846a275fc2
139 N9165c2ecff5649be80a8a111084cacca schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Extracellular Matrix Proteins
141 rdf:type schema:DefinedTerm
142 N963863e642c84419946e52545516536a schema:name Springer Nature - SN SciGraph project
143 rdf:type schema:Organization
144 Na2e20ce5e51740c59dfc7135ca843211 rdf:first sg:person.01250173202.18
145 rdf:rest N861376aef1f142e2a1a05d53a63fe357
146 Nac5ae7a3b1e746069e8d746ac71e84c7 rdf:first sg:person.01370661021.14
147 rdf:rest N8c06e499f6e749ca843457110c461e92
148 Naf0132b01c074b959f40d4d3c34239b7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Gene Expression Profiling
150 rdf:type schema:DefinedTerm
151 Nc3b77de342384648945f7ccc3b14077e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Proteomics
153 rdf:type schema:DefinedTerm
154 Nc51ec54e72f14887914cdbb43478e714 schema:name dimensions_id
155 schema:value pub.1007456817
156 rdf:type schema:PropertyValue
157 Nc785ded84c014a0bbfb774947352f267 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name Cellular Senescence
159 rdf:type schema:DefinedTerm
160 Ncce33872d6ca44e2b723b34b042773f8 schema:name pubmed_id
161 schema:value 21573704
162 rdf:type schema:PropertyValue
163 Ndaba0e13ddb54ffd926d95a82af2d05b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
164 schema:name Foreskin
165 rdf:type schema:DefinedTerm
166 Ne849a4b7b7af404fa6a095a3c2a4f15b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
167 schema:name RNA, Messenger
168 rdf:type schema:DefinedTerm
169 Neee9d3ec9d5449dc88ed86135908c1f2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
170 schema:name Fibroblasts
171 rdf:type schema:DefinedTerm
172 Nfa735a90a088493ebf6ef75363be9305 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
173 schema:name Blotting, Western
174 rdf:type schema:DefinedTerm
175 Nfaa433493b864b01b67697d0aa7cef47 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
176 schema:name Humans
177 rdf:type schema:DefinedTerm
178 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
179 schema:name Biological Sciences
180 rdf:type schema:DefinedTerm
181 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
182 schema:name Genetics
183 rdf:type schema:DefinedTerm
184 sg:journal.1115754 schema:issn 0219-1032
185 1016-8478
186 schema:name Molecules and Cells
187 schema:publisher Springer Nature
188 rdf:type schema:Periodical
189 sg:person.01250173202.18 schema:affiliation grid-institutes:grid.410885.0
190 schema:familyName Yang
191 schema:givenName Kyeong Eun
192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01250173202.18
193 rdf:type schema:Person
194 sg:person.01266030275.44 schema:affiliation grid-institutes:grid.254230.2
195 schema:familyName Choi
196 schema:givenName Jong Soon
197 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01266030275.44
198 rdf:type schema:Person
199 sg:person.01317070447.13 schema:affiliation grid-institutes:grid.410885.0
200 schema:familyName Jang
201 schema:givenName Ik-Soon
202 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01317070447.13
203 rdf:type schema:Person
204 sg:person.01317510671.87 schema:affiliation grid-institutes:grid.15444.30
205 schema:familyName Park
206 schema:givenName Junsoo
207 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01317510671.87
208 rdf:type schema:Person
209 sg:person.01343712215.97 schema:affiliation grid-institutes:grid.410885.0
210 schema:familyName Kim
211 schema:givenName Seung Il
212 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01343712215.97
213 rdf:type schema:Person
214 sg:person.01370661021.14 schema:affiliation grid-institutes:grid.31501.36
215 schema:familyName Rhim
216 schema:givenName Ji-Heon
217 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01370661021.14
218 rdf:type schema:Person
219 sg:person.016714712721.78 schema:affiliation grid-institutes:grid.444164.7
220 schema:familyName Lee
221 schema:givenName Seung-Hoon
222 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016714712721.78
223 rdf:type schema:Person
224 sg:person.0662776456.12 schema:affiliation grid-institutes:grid.410885.0
225 schema:familyName Kwon
226 schema:givenName Joseph
227 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0662776456.12
228 rdf:type schema:Person
229 sg:pub.10.1007/978-0-387-85766-4_16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026775855
230 https://doi.org/10.1007/978-0-387-85766-4_16
231 rdf:type schema:CreativeWork
232 sg:pub.10.1007/s004180100325 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006767287
233 https://doi.org/10.1007/s004180100325
234 rdf:type schema:CreativeWork
235 sg:pub.10.1007/s10059-009-0141-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044258272
236 https://doi.org/10.1007/s10059-009-0141-9
237 rdf:type schema:CreativeWork
238 sg:pub.10.1038/cdd.2008.96 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037759935
239 https://doi.org/10.1038/cdd.2008.96
240 rdf:type schema:CreativeWork
241 sg:pub.10.1038/ncb1909 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008470674
242 https://doi.org/10.1038/ncb1909
243 rdf:type schema:CreativeWork
244 grid-institutes:grid.15444.30 schema:alternateName Division of Biological Science and Technology, Yonsei University, 220-100, Wonju, Korea
245 schema:name Division of Biological Science and Technology, Yonsei University, 220-100, Wonju, Korea
246 rdf:type schema:Organization
247 grid-institutes:grid.254230.2 schema:alternateName Graduate School of Analytical Science and Technology, Chungnam National University, 305-764, Daejeon, Korea
248 schema:name Division of Life Science, Korea Basic Science Institute, 305-333, Daejeon, Korea
249 Graduate School of Analytical Science and Technology, Chungnam National University, 305-764, Daejeon, Korea
250 rdf:type schema:Organization
251 grid-institutes:grid.31501.36 schema:alternateName Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, 110-799, Seoul, Korea
252 schema:name Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, 110-799, Seoul, Korea
253 rdf:type schema:Organization
254 grid-institutes:grid.410885.0 schema:alternateName Division of Life Science, Korea Basic Science Institute, 305-333, Daejeon, Korea
255 Korea Basic Science Institute, Gwangju Center, 500-757, Gwangju, Korea
256 schema:name Division of Life Science, Korea Basic Science Institute, 305-333, Daejeon, Korea
257 Korea Basic Science Institute, Gwangju Center, 500-757, Gwangju, Korea
258 rdf:type schema:Organization
259 grid-institutes:grid.444164.7 schema:alternateName Department of Biological Science, Yong-In University, 449-719, Yongin, Korea
260 schema:name Department of Biological Science, Yong-In University, 449-719, Yongin, Korea
261 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...