A hybrid optical–mechanical calibration procedure for the Scalable-SPIDAR haptic device View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-09

AUTHORS

M’hamed Frad, Hichem Maaref, Samir Otmane, Abdellatif Mtibaa

ABSTRACT

In this research, a simple, yet, efficient calibration procedure is presented in order to improve the accuracy of the Scalable-SPIDAR haptic device. The two-stage procedure aims to reduce discrepancies between measured and actual values. First, we propose a new semi-automatic procedure for the initialization of the haptic device. To perform this initialization with a high level of accuracy, an infrared optical tracking device was used. Furthermore, audio and haptic cues were used to guide the user during the initialization process. Second, we developed two calibration methods based on regression techniques that effectively compensate for the errors in tracked position. Both neural networks and support vector regression methods were applied to calibrate the position errors present in the haptic device readings. A comparison between these two regression methods was carried out to show the underlying algorithm and to indicate the inherent advantages and limitations for each method. Initial evaluation of the proposed procedure indicated that it is possible to improve accuracy by reducing the Scalable-SPIDAR’s average absolute position error to about 6 mm within a 1 m × 1 m × 1 m workspace. More... »

PAGES

109-125

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10055-016-0303-y

DOI

http://dx.doi.org/10.1007/s10055-016-0303-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1040421698


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Monastir", 
          "id": "https://www.grid.ac/institutes/grid.411838.7", 
          "name": [
            "IBISC Laboratory, University of Evry Val-d\u2019Essonne, \u00c9vry, France", 
            "E\u00b5E Laboratory, University of Monastir, Monastir, Tunisia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Frad", 
        "givenName": "M\u2019hamed", 
        "id": "sg:person.013511504263.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013511504263.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of \u00c9vry Val d'Essonne", 
          "id": "https://www.grid.ac/institutes/grid.8390.2", 
          "name": [
            "IBISC Laboratory, University of Evry Val-d\u2019Essonne, \u00c9vry, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Maaref", 
        "givenName": "Hichem", 
        "id": "sg:person.012562047471.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012562047471.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of \u00c9vry Val d'Essonne", 
          "id": "https://www.grid.ac/institutes/grid.8390.2", 
          "name": [
            "IBISC Laboratory, University of Evry Val-d\u2019Essonne, \u00c9vry, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Otmane", 
        "givenName": "Samir", 
        "id": "sg:person.010006756017.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010006756017.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Monastir", 
          "id": "https://www.grid.ac/institutes/grid.411838.7", 
          "name": [
            "E\u00b5E Laboratory, University of Monastir, Monastir, Tunisia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mtibaa", 
        "givenName": "Abdellatif", 
        "id": "sg:person.012661166623.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012661166623.16"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1023/b:stco.0000035301.49549.88", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000991887", 
          "https://doi.org/10.1023/b:stco.0000035301.49549.88"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/10984697_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001094692", 
          "https://doi.org/10.1007/10984697_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1108/02602280410515770", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003281915"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/pres.1992.1.2.173", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005655402"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/b10604-15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006562113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01409422", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006912153", 
          "https://doi.org/10.1007/bf01409422"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01409422", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006912153", 
          "https://doi.org/10.1007/bf01409422"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-7091-6785-4_3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009334140", 
          "https://doi.org/10.1007/978-3-7091-6785-4_3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-7091-6785-4_3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009334140", 
          "https://doi.org/10.1007/978-3-7091-6785-4_3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0097-8493(97)00030-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010347662"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.60417", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013910468"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/354384.354506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020387605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10055-005-0005-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028825232", 
          "https://doi.org/10.1007/s10055-005-0005-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10055-005-0005-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028825232", 
          "https://doi.org/10.1007/s10055-005-0005-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/pres.1997.6.5.532", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030141940"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11758525_81", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030393195", 
          "https://doi.org/10.1007/11758525_81"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11758525_81", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030393195", 
          "https://doi.org/10.1007/11758525_81"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1032573094", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-84858-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032573094", 
          "https://doi.org/10.1007/978-0-387-84858-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-84858-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032573094", 
          "https://doi.org/10.1007/978-0-387-84858-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0893-6080(89)90020-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034169987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0893-6080(89)90020-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034169987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compind.2013.07.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034357460"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01408592", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037771763", 
          "https://doi.org/10.1007/bf01408592"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01408592", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037771763", 
          "https://doi.org/10.1007/bf01408592"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/769953.769982", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039240452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-011-3381-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042003331", 
          "https://doi.org/10.1007/s00170-011-3381-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ins.2008.05.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044931802"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0925-2312(01)00644-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052990881"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-4-431-55690-9_46", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053385380", 
          "https://doi.org/10.1007/978-4-431-55690-9_46"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/2945.506224", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061146230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/72.329697", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061218516"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mcg.2002.1046626", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061391202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tgrs.2003.818016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061609032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tvcg.2008.63", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061813089"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.1517562", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062071445"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iros.1992.594498", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086352098"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/vr.2001.913771", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093301498"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/whc.2005.84", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093619443"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/vr.2002.996540", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093783166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/vrais.1995.512494", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094030679"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cgi.1997.601306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095275474"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/memea.2014.6860046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095539558"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/whc.2011.5945472", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095707152"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-09", 
    "datePublishedReg": "2017-09-01", 
    "description": "In this research, a simple, yet, efficient calibration procedure is presented in order to improve the accuracy of the Scalable-SPIDAR haptic device. The two-stage procedure aims to reduce discrepancies between measured and actual values. First, we propose a new semi-automatic procedure for the initialization of the haptic device. To perform this initialization with a high level of accuracy, an infrared optical tracking device was used. Furthermore, audio and haptic cues were used to guide the user during the initialization process. Second, we developed two calibration methods based on regression techniques that effectively compensate for the errors in tracked position. Both neural networks and support vector regression methods were applied to calibrate the position errors present in the haptic device readings. A comparison between these two regression methods was carried out to show the underlying algorithm and to indicate the inherent advantages and limitations for each method. Initial evaluation of the proposed procedure indicated that it is possible to improve accuracy by reducing the Scalable-SPIDAR\u2019s average absolute position error to about 6 mm within a 1 m \u00d7 1 m \u00d7 1 m workspace.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10055-016-0303-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1042358", 
        "issn": [
          "1359-4338", 
          "1434-9957"
        ], 
        "name": "Virtual Reality", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "21"
      }
    ], 
    "name": "A hybrid optical\u2013mechanical calibration procedure for the Scalable-SPIDAR haptic device", 
    "pagination": "109-125", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c08d05e07ba38b47b1e61c824c34e06a39775ed3b6655c6b70eefc3f187d5ba6"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10055-016-0303-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1040421698"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10055-016-0303-y", 
      "https://app.dimensions.ai/details/publication/pub.1040421698"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:38", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70040_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10055-016-0303-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10055-016-0303-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10055-016-0303-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10055-016-0303-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10055-016-0303-y'


 

This table displays all metadata directly associated to this object as RDF triples.

206 TRIPLES      21 PREDICATES      64 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10055-016-0303-y schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nc50a63a2051949b89b4700f2d6bbcfd7
4 schema:citation sg:pub.10.1007/10984697_1
5 sg:pub.10.1007/11758525_81
6 sg:pub.10.1007/978-0-387-84858-7
7 sg:pub.10.1007/978-3-7091-6785-4_3
8 sg:pub.10.1007/978-4-431-55690-9_46
9 sg:pub.10.1007/bf01408592
10 sg:pub.10.1007/bf01409422
11 sg:pub.10.1007/s00170-011-3381-8
12 sg:pub.10.1007/s10055-005-0005-3
13 sg:pub.10.1023/b:stco.0000035301.49549.88
14 https://app.dimensions.ai/details/publication/pub.1032573094
15 https://doi.org/10.1016/0893-6080(89)90020-8
16 https://doi.org/10.1016/j.compind.2013.07.005
17 https://doi.org/10.1016/j.ins.2008.05.016
18 https://doi.org/10.1016/s0097-8493(97)00030-7
19 https://doi.org/10.1016/s0925-2312(01)00644-0
20 https://doi.org/10.1108/02602280410515770
21 https://doi.org/10.1109/2945.506224
22 https://doi.org/10.1109/72.329697
23 https://doi.org/10.1109/cgi.1997.601306
24 https://doi.org/10.1109/iros.1992.594498
25 https://doi.org/10.1109/mcg.2002.1046626
26 https://doi.org/10.1109/memea.2014.6860046
27 https://doi.org/10.1109/tgrs.2003.818016
28 https://doi.org/10.1109/tvcg.2008.63
29 https://doi.org/10.1109/vr.2001.913771
30 https://doi.org/10.1109/vr.2002.996540
31 https://doi.org/10.1109/vrais.1995.512494
32 https://doi.org/10.1109/whc.2005.84
33 https://doi.org/10.1109/whc.2011.5945472
34 https://doi.org/10.1115/1.1517562
35 https://doi.org/10.1117/12.60417
36 https://doi.org/10.1145/354384.354506
37 https://doi.org/10.1145/769953.769982
38 https://doi.org/10.1162/pres.1992.1.2.173
39 https://doi.org/10.1162/pres.1997.6.5.532
40 https://doi.org/10.1201/b10604-15
41 schema:datePublished 2017-09
42 schema:datePublishedReg 2017-09-01
43 schema:description In this research, a simple, yet, efficient calibration procedure is presented in order to improve the accuracy of the Scalable-SPIDAR haptic device. The two-stage procedure aims to reduce discrepancies between measured and actual values. First, we propose a new semi-automatic procedure for the initialization of the haptic device. To perform this initialization with a high level of accuracy, an infrared optical tracking device was used. Furthermore, audio and haptic cues were used to guide the user during the initialization process. Second, we developed two calibration methods based on regression techniques that effectively compensate for the errors in tracked position. Both neural networks and support vector regression methods were applied to calibrate the position errors present in the haptic device readings. A comparison between these two regression methods was carried out to show the underlying algorithm and to indicate the inherent advantages and limitations for each method. Initial evaluation of the proposed procedure indicated that it is possible to improve accuracy by reducing the Scalable-SPIDAR’s average absolute position error to about 6 mm within a 1 m × 1 m × 1 m workspace.
44 schema:genre research_article
45 schema:inLanguage en
46 schema:isAccessibleForFree false
47 schema:isPartOf N25e5ef4a7b93419aa538d7b3fa01fdb1
48 Nc37a67986c8f4816a6c29c0afc352d81
49 sg:journal.1042358
50 schema:name A hybrid optical–mechanical calibration procedure for the Scalable-SPIDAR haptic device
51 schema:pagination 109-125
52 schema:productId N189d3e3fa9764ab2901d766462c2f31c
53 N9d8249e8bf144713b07aebadd644f5e1
54 Ne937c4c720454aaf911c72e8acd473e6
55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040421698
56 https://doi.org/10.1007/s10055-016-0303-y
57 schema:sdDatePublished 2019-04-11T12:38
58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
59 schema:sdPublisher N80c590c04bc342eaae54fd0f99dff424
60 schema:url https://link.springer.com/10.1007%2Fs10055-016-0303-y
61 sgo:license sg:explorer/license/
62 sgo:sdDataset articles
63 rdf:type schema:ScholarlyArticle
64 N189d3e3fa9764ab2901d766462c2f31c schema:name dimensions_id
65 schema:value pub.1040421698
66 rdf:type schema:PropertyValue
67 N25e5ef4a7b93419aa538d7b3fa01fdb1 schema:volumeNumber 21
68 rdf:type schema:PublicationVolume
69 N80c590c04bc342eaae54fd0f99dff424 schema:name Springer Nature - SN SciGraph project
70 rdf:type schema:Organization
71 N90f65b3aeab743f8bd31dc086f587f3f rdf:first sg:person.012562047471.99
72 rdf:rest N9d181ea765d44a2b91100f986aff606d
73 N9d181ea765d44a2b91100f986aff606d rdf:first sg:person.010006756017.05
74 rdf:rest Nb82803a28ea84b65a61cda9c5d5a8c8b
75 N9d8249e8bf144713b07aebadd644f5e1 schema:name readcube_id
76 schema:value c08d05e07ba38b47b1e61c824c34e06a39775ed3b6655c6b70eefc3f187d5ba6
77 rdf:type schema:PropertyValue
78 Nb82803a28ea84b65a61cda9c5d5a8c8b rdf:first sg:person.012661166623.16
79 rdf:rest rdf:nil
80 Nc37a67986c8f4816a6c29c0afc352d81 schema:issueNumber 3
81 rdf:type schema:PublicationIssue
82 Nc50a63a2051949b89b4700f2d6bbcfd7 rdf:first sg:person.013511504263.28
83 rdf:rest N90f65b3aeab743f8bd31dc086f587f3f
84 Ne937c4c720454aaf911c72e8acd473e6 schema:name doi
85 schema:value 10.1007/s10055-016-0303-y
86 rdf:type schema:PropertyValue
87 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
88 schema:name Information and Computing Sciences
89 rdf:type schema:DefinedTerm
90 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
91 schema:name Artificial Intelligence and Image Processing
92 rdf:type schema:DefinedTerm
93 sg:journal.1042358 schema:issn 1359-4338
94 1434-9957
95 schema:name Virtual Reality
96 rdf:type schema:Periodical
97 sg:person.010006756017.05 schema:affiliation https://www.grid.ac/institutes/grid.8390.2
98 schema:familyName Otmane
99 schema:givenName Samir
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010006756017.05
101 rdf:type schema:Person
102 sg:person.012562047471.99 schema:affiliation https://www.grid.ac/institutes/grid.8390.2
103 schema:familyName Maaref
104 schema:givenName Hichem
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012562047471.99
106 rdf:type schema:Person
107 sg:person.012661166623.16 schema:affiliation https://www.grid.ac/institutes/grid.411838.7
108 schema:familyName Mtibaa
109 schema:givenName Abdellatif
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012661166623.16
111 rdf:type schema:Person
112 sg:person.013511504263.28 schema:affiliation https://www.grid.ac/institutes/grid.411838.7
113 schema:familyName Frad
114 schema:givenName M’hamed
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013511504263.28
116 rdf:type schema:Person
117 sg:pub.10.1007/10984697_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001094692
118 https://doi.org/10.1007/10984697_1
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/11758525_81 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030393195
121 https://doi.org/10.1007/11758525_81
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/978-0-387-84858-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032573094
124 https://doi.org/10.1007/978-0-387-84858-7
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/978-3-7091-6785-4_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009334140
127 https://doi.org/10.1007/978-3-7091-6785-4_3
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/978-4-431-55690-9_46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053385380
130 https://doi.org/10.1007/978-4-431-55690-9_46
131 rdf:type schema:CreativeWork
132 sg:pub.10.1007/bf01408592 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037771763
133 https://doi.org/10.1007/bf01408592
134 rdf:type schema:CreativeWork
135 sg:pub.10.1007/bf01409422 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006912153
136 https://doi.org/10.1007/bf01409422
137 rdf:type schema:CreativeWork
138 sg:pub.10.1007/s00170-011-3381-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042003331
139 https://doi.org/10.1007/s00170-011-3381-8
140 rdf:type schema:CreativeWork
141 sg:pub.10.1007/s10055-005-0005-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028825232
142 https://doi.org/10.1007/s10055-005-0005-3
143 rdf:type schema:CreativeWork
144 sg:pub.10.1023/b:stco.0000035301.49549.88 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000991887
145 https://doi.org/10.1023/b:stco.0000035301.49549.88
146 rdf:type schema:CreativeWork
147 https://app.dimensions.ai/details/publication/pub.1032573094 schema:CreativeWork
148 https://doi.org/10.1016/0893-6080(89)90020-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034169987
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.compind.2013.07.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034357460
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.ins.2008.05.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044931802
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/s0097-8493(97)00030-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010347662
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/s0925-2312(01)00644-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052990881
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1108/02602280410515770 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003281915
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1109/2945.506224 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061146230
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1109/72.329697 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061218516
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1109/cgi.1997.601306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095275474
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1109/iros.1992.594498 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086352098
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1109/mcg.2002.1046626 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061391202
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1109/memea.2014.6860046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095539558
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1109/tgrs.2003.818016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061609032
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1109/tvcg.2008.63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061813089
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1109/vr.2001.913771 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093301498
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1109/vr.2002.996540 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093783166
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1109/vrais.1995.512494 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094030679
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1109/whc.2005.84 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093619443
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1109/whc.2011.5945472 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095707152
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1115/1.1517562 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062071445
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1117/12.60417 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013910468
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1145/354384.354506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020387605
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1145/769953.769982 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039240452
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1162/pres.1992.1.2.173 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005655402
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1162/pres.1997.6.5.532 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030141940
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1201/b10604-15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006562113
199 rdf:type schema:CreativeWork
200 https://www.grid.ac/institutes/grid.411838.7 schema:alternateName University of Monastir
201 schema:name EµE Laboratory, University of Monastir, Monastir, Tunisia
202 IBISC Laboratory, University of Evry Val-d’Essonne, Évry, France
203 rdf:type schema:Organization
204 https://www.grid.ac/institutes/grid.8390.2 schema:alternateName University of Évry Val d'Essonne
205 schema:name IBISC Laboratory, University of Evry Val-d’Essonne, Évry, France
206 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...