Discriminability-based evaluation of transmission capability of tactile transmission systems View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-06

AUTHORS

Shogo Okamoto, Masashi Konyo, Satoshi Tadokoro

ABSTRACT

Tactile transmission systems deliver tactile information such as texture roughness to operators of robotic systems. Such systems are typically composed of tactile sensors that sense the physical characteristics of textures and tactile displays that present tactile stimuli to operators. One problem associated with tactile transmission systems is that when the system has a bottleneck, it is difficult to identify whether the tactile sensor, tactile display, or perceptual ability of the user is the cause because they have different performance criteria. To solve this problem, this study established an evaluation method that uses the discriminability index as an evaluation criterion. The method lets tactile sensors, displays, and human tactile perception be assessed in terms of the ability to transmit physical quantities; the same criterion is used for all three possible causes so that their abilities can be directly compared. The developed method was applied to a tactile-roughness transmission system (Okamoto et al. 2009), and its tactile sensor was identified as the bottleneck of the system. More... »

PAGES

141-150

References to SciGraph publications

  • 2008. Powerful Compact Tactile Display with Microhydraulic Actuators in HAPTICS: PERCEPTION, DEVICES AND SCENARIOS
  • 1956-06. A least squares solution for paired comparisons with incomplete data in PSYCHOMETRIKA
  • 1969-11. Sensation magnitude of vibrotactile stimuli in ATTENTION, PERCEPTION, & PSYCHOPHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10055-011-0192-z

    DOI

    http://dx.doi.org/10.1007/s10055-011-0192-z

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1030886993


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Psychology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Psychology and Cognitive Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Nagoya University", 
              "id": "https://www.grid.ac/institutes/grid.27476.30", 
              "name": [
                "The Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Okamoto", 
            "givenName": "Shogo", 
            "id": "sg:person.0740553076.39", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0740553076.39"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Tohoku University", 
              "id": "https://www.grid.ac/institutes/grid.69566.3a", 
              "name": [
                "The Graduate School of Information Sciences, Tohoku University, 6-6-1, Aramaki Aza Aoba, Sendai, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Konyo", 
            "givenName": "Masashi", 
            "id": "sg:person.01101070023.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101070023.41"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Tohoku University", 
              "id": "https://www.grid.ac/institutes/grid.69566.3a", 
              "name": [
                "The Graduate School of Information Sciences, Tohoku University, 6-6-1, Aramaki Aza Aoba, Sendai, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tadokoro", 
            "givenName": "Satoshi", 
            "id": "sg:person.013454033251.77", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013454033251.77"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1037/h0024561", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002366758"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.3758/bf03212793", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011008654", 
              "https://doi.org/10.3758/bf03212793"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/08990220701318163", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014881075"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1001/archneur.60.10.1369", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021534493"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3109/10929080500230403", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022724392"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/1230040.1230077", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026515573"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02289093", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028315481", 
              "https://doi.org/10.1007/bf02289093"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02289093", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028315481", 
              "https://doi.org/10.1007/bf02289093"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jneumeth.2006.10.012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029686363"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-69057-3_58", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049827026", 
              "https://doi.org/10.1007/978-3-540-69057-3_58"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1162/pres.1995.4.4.387", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051803019"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/51.391770", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061184593"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/jsen.2007.895973", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061320393"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tnsre.2008.920075", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061740348"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tvcg.2006.28", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061812673"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1115/1.2798317", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062082557"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1121/1.1510140", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062267412"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1121/1.381610", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062332905"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/1415006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069479748"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/robot.2005.1570499", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093393590"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/robot.2010.5509926", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094502503"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/whc.2005.92", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094765225"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/robot.2009.5152415", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095556003"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/acprof:oso/9780195173154.001.0001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098726429"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2012-06", 
        "datePublishedReg": "2012-06-01", 
        "description": "Tactile transmission systems deliver tactile information such as texture roughness to operators of robotic systems. Such systems are typically composed of tactile sensors that sense the physical characteristics of textures and tactile displays that present tactile stimuli to operators. One problem associated with tactile transmission systems is that when the system has a bottleneck, it is difficult to identify whether the tactile sensor, tactile display, or perceptual ability of the user is the cause because they have different performance criteria. To solve this problem, this study established an evaluation method that uses the discriminability index as an evaluation criterion. The method lets tactile sensors, displays, and human tactile perception be assessed in terms of the ability to transmit physical quantities; the same criterion is used for all three possible causes so that their abilities can be directly compared. The developed method was applied to a tactile-roughness transmission system (Okamoto et al. 2009), and its tactile sensor was identified as the bottleneck of the system.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10055-011-0192-z", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.5680658", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.5970800", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1042358", 
            "issn": [
              "1359-4338", 
              "1434-9957"
            ], 
            "name": "Virtual Reality", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "16"
          }
        ], 
        "name": "Discriminability-based evaluation of transmission capability of tactile transmission systems", 
        "pagination": "141-150", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "932440b14a58118acde2401fe03550e78892212e60ff6188b619304c8d2c0509"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10055-011-0192-z"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1030886993"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10055-011-0192-z", 
          "https://app.dimensions.ai/details/publication/pub.1030886993"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T14:03", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000489.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/s10055-011-0192-z"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10055-011-0192-z'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10055-011-0192-z'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10055-011-0192-z'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10055-011-0192-z'


     

    This table displays all metadata directly associated to this object as RDF triples.

    154 TRIPLES      21 PREDICATES      50 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10055-011-0192-z schema:about anzsrc-for:17
    2 anzsrc-for:1701
    3 schema:author Nbb0b66fa96994ae18b4d22a7a2957b3f
    4 schema:citation sg:pub.10.1007/978-3-540-69057-3_58
    5 sg:pub.10.1007/bf02289093
    6 sg:pub.10.3758/bf03212793
    7 https://doi.org/10.1001/archneur.60.10.1369
    8 https://doi.org/10.1016/j.jneumeth.2006.10.012
    9 https://doi.org/10.1037/h0024561
    10 https://doi.org/10.1080/08990220701318163
    11 https://doi.org/10.1093/acprof:oso/9780195173154.001.0001
    12 https://doi.org/10.1109/51.391770
    13 https://doi.org/10.1109/jsen.2007.895973
    14 https://doi.org/10.1109/robot.2005.1570499
    15 https://doi.org/10.1109/robot.2009.5152415
    16 https://doi.org/10.1109/robot.2010.5509926
    17 https://doi.org/10.1109/tnsre.2008.920075
    18 https://doi.org/10.1109/tvcg.2006.28
    19 https://doi.org/10.1109/whc.2005.92
    20 https://doi.org/10.1115/1.2798317
    21 https://doi.org/10.1121/1.1510140
    22 https://doi.org/10.1121/1.381610
    23 https://doi.org/10.1145/1230040.1230077
    24 https://doi.org/10.1162/pres.1995.4.4.387
    25 https://doi.org/10.2307/1415006
    26 https://doi.org/10.3109/10929080500230403
    27 schema:datePublished 2012-06
    28 schema:datePublishedReg 2012-06-01
    29 schema:description Tactile transmission systems deliver tactile information such as texture roughness to operators of robotic systems. Such systems are typically composed of tactile sensors that sense the physical characteristics of textures and tactile displays that present tactile stimuli to operators. One problem associated with tactile transmission systems is that when the system has a bottleneck, it is difficult to identify whether the tactile sensor, tactile display, or perceptual ability of the user is the cause because they have different performance criteria. To solve this problem, this study established an evaluation method that uses the discriminability index as an evaluation criterion. The method lets tactile sensors, displays, and human tactile perception be assessed in terms of the ability to transmit physical quantities; the same criterion is used for all three possible causes so that their abilities can be directly compared. The developed method was applied to a tactile-roughness transmission system (Okamoto et al. 2009), and its tactile sensor was identified as the bottleneck of the system.
    30 schema:genre research_article
    31 schema:inLanguage en
    32 schema:isAccessibleForFree false
    33 schema:isPartOf N57d1f09db3044e3c9bde6d05fcd85286
    34 Neccc660aa40f4b8fb3e74df773e0cf4c
    35 sg:journal.1042358
    36 schema:name Discriminability-based evaluation of transmission capability of tactile transmission systems
    37 schema:pagination 141-150
    38 schema:productId N4bb14e7d6eee430e9849c738134d1e55
    39 Nb45cca3236434603840d1d55b60588e1
    40 Nfc59076d60c445968c9c72a6ff28113e
    41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030886993
    42 https://doi.org/10.1007/s10055-011-0192-z
    43 schema:sdDatePublished 2019-04-10T14:03
    44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    45 schema:sdPublisher N3b84119c659e461387d28acb98f30264
    46 schema:url http://link.springer.com/10.1007/s10055-011-0192-z
    47 sgo:license sg:explorer/license/
    48 sgo:sdDataset articles
    49 rdf:type schema:ScholarlyArticle
    50 N3b84119c659e461387d28acb98f30264 schema:name Springer Nature - SN SciGraph project
    51 rdf:type schema:Organization
    52 N4bb14e7d6eee430e9849c738134d1e55 schema:name doi
    53 schema:value 10.1007/s10055-011-0192-z
    54 rdf:type schema:PropertyValue
    55 N4d5bc4b5e486475c9a7ccbce2dd3ec0b rdf:first sg:person.01101070023.41
    56 rdf:rest N5d485046c6aa41a29fb6d2b10594ac02
    57 N57d1f09db3044e3c9bde6d05fcd85286 schema:volumeNumber 16
    58 rdf:type schema:PublicationVolume
    59 N5d485046c6aa41a29fb6d2b10594ac02 rdf:first sg:person.013454033251.77
    60 rdf:rest rdf:nil
    61 Nb45cca3236434603840d1d55b60588e1 schema:name readcube_id
    62 schema:value 932440b14a58118acde2401fe03550e78892212e60ff6188b619304c8d2c0509
    63 rdf:type schema:PropertyValue
    64 Nbb0b66fa96994ae18b4d22a7a2957b3f rdf:first sg:person.0740553076.39
    65 rdf:rest N4d5bc4b5e486475c9a7ccbce2dd3ec0b
    66 Neccc660aa40f4b8fb3e74df773e0cf4c schema:issueNumber 2
    67 rdf:type schema:PublicationIssue
    68 Nfc59076d60c445968c9c72a6ff28113e schema:name dimensions_id
    69 schema:value pub.1030886993
    70 rdf:type schema:PropertyValue
    71 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
    72 schema:name Psychology and Cognitive Sciences
    73 rdf:type schema:DefinedTerm
    74 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
    75 schema:name Psychology
    76 rdf:type schema:DefinedTerm
    77 sg:grant.5680658 http://pending.schema.org/fundedItem sg:pub.10.1007/s10055-011-0192-z
    78 rdf:type schema:MonetaryGrant
    79 sg:grant.5970800 http://pending.schema.org/fundedItem sg:pub.10.1007/s10055-011-0192-z
    80 rdf:type schema:MonetaryGrant
    81 sg:journal.1042358 schema:issn 1359-4338
    82 1434-9957
    83 schema:name Virtual Reality
    84 rdf:type schema:Periodical
    85 sg:person.01101070023.41 schema:affiliation https://www.grid.ac/institutes/grid.69566.3a
    86 schema:familyName Konyo
    87 schema:givenName Masashi
    88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101070023.41
    89 rdf:type schema:Person
    90 sg:person.013454033251.77 schema:affiliation https://www.grid.ac/institutes/grid.69566.3a
    91 schema:familyName Tadokoro
    92 schema:givenName Satoshi
    93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013454033251.77
    94 rdf:type schema:Person
    95 sg:person.0740553076.39 schema:affiliation https://www.grid.ac/institutes/grid.27476.30
    96 schema:familyName Okamoto
    97 schema:givenName Shogo
    98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0740553076.39
    99 rdf:type schema:Person
    100 sg:pub.10.1007/978-3-540-69057-3_58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049827026
    101 https://doi.org/10.1007/978-3-540-69057-3_58
    102 rdf:type schema:CreativeWork
    103 sg:pub.10.1007/bf02289093 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028315481
    104 https://doi.org/10.1007/bf02289093
    105 rdf:type schema:CreativeWork
    106 sg:pub.10.3758/bf03212793 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011008654
    107 https://doi.org/10.3758/bf03212793
    108 rdf:type schema:CreativeWork
    109 https://doi.org/10.1001/archneur.60.10.1369 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021534493
    110 rdf:type schema:CreativeWork
    111 https://doi.org/10.1016/j.jneumeth.2006.10.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029686363
    112 rdf:type schema:CreativeWork
    113 https://doi.org/10.1037/h0024561 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002366758
    114 rdf:type schema:CreativeWork
    115 https://doi.org/10.1080/08990220701318163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014881075
    116 rdf:type schema:CreativeWork
    117 https://doi.org/10.1093/acprof:oso/9780195173154.001.0001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098726429
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.1109/51.391770 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061184593
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.1109/jsen.2007.895973 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061320393
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1109/robot.2005.1570499 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093393590
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1109/robot.2009.5152415 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095556003
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1109/robot.2010.5509926 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094502503
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1109/tnsre.2008.920075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061740348
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1109/tvcg.2006.28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061812673
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1109/whc.2005.92 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094765225
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1115/1.2798317 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062082557
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1121/1.1510140 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062267412
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1121/1.381610 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062332905
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1145/1230040.1230077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026515573
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1162/pres.1995.4.4.387 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051803019
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.2307/1415006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069479748
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.3109/10929080500230403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022724392
    148 rdf:type schema:CreativeWork
    149 https://www.grid.ac/institutes/grid.27476.30 schema:alternateName Nagoya University
    150 schema:name The Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
    151 rdf:type schema:Organization
    152 https://www.grid.ac/institutes/grid.69566.3a schema:alternateName Tohoku University
    153 schema:name The Graduate School of Information Sciences, Tohoku University, 6-6-1, Aramaki Aza Aoba, Sendai, Japan
    154 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...