Quantum limits of cold damping with optomechanical coupling View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2001-12

AUTHORS

J.-M. Courty, A. Heidmann, M. Pinard

ABSTRACT

Thermal noise of a mirror can be reduced by cold damping. The displacement is measured with a high-finesse cavity and controlled with the radiation pressure of a modulated light beam. We establish the general quantum limits of noise in cold damping mechanisms and we show that the optomechanical system allows to reach these limits. Displacement noise can be arbitrarily reduced in a narrow frequency band. In a wide-band analysis we show that thermal fluctuations are reduced as with classical damping whereas quantum zero-point fluctuations are left unchanged. The only limit of cold damping is then due to zero-point energy of the mirror. More... »

PAGES

399-408

Journal

TITLE

The European Physical Journal D

ISSUE

3

VOLUME

17

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s100530170014

DOI

http://dx.doi.org/10.1007/s100530170014

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1005089077


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Quantum Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Kastler-Brossel Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.462576.4", 
          "name": [
            "Laboratoire Kastler Brossel (website: www.spectro.jussieu.fr/Mesure), UPMC Case 74, 4 place Jussieu, 75252 Paris Cedex 05, France, FR"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Courty", 
        "givenName": "J.-M.", 
        "id": "sg:person.015323404135.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015323404135.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kastler-Brossel Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.462576.4", 
          "name": [
            "Laboratoire Kastler Brossel (website: www.spectro.jussieu.fr/Mesure), UPMC Case 74, 4 place Jussieu, 75252 Paris Cedex 05, France, FR"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Heidmann", 
        "givenName": "A.", 
        "id": "sg:person.013556655525.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013556655525.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kastler-Brossel Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.462576.4", 
          "name": [
            "Laboratoire Kastler Brossel (website: www.spectro.jussieu.fr/Mesure), UPMC Case 74, 4 place Jussieu, 75252 Paris Cedex 05, France, FR"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pinard", 
        "givenName": "M.", 
        "id": "sg:person.01011760245.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01011760245.37"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2001-12", 
    "datePublishedReg": "2001-12-01", 
    "description": "Thermal noise of a mirror can be reduced by cold damping. The displacement is measured with a high-finesse cavity and controlled with the radiation pressure of a modulated light beam. We establish the general quantum limits of noise in cold damping mechanisms and we show that the optomechanical system allows to reach these limits. Displacement noise can be arbitrarily reduced in a narrow frequency band. In a wide-band analysis we show that thermal fluctuations are reduced as with classical damping whereas quantum zero-point fluctuations are left unchanged. The only limit of cold damping is then due to zero-point energy of the mirror.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s100530170014", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1295077", 
        "issn": [
          "1434-6060", 
          "1434-6079"
        ], 
        "name": "The European Physical Journal D", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "17"
      }
    ], 
    "name": "Quantum limits of cold damping with optomechanical coupling", 
    "pagination": "399-408", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "183f47dcb227dc892916b71c9b6491c1a0fd407f9f9293bab60d73a564adca84"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s100530170014"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1005089077"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s100530170014", 
      "https://app.dimensions.ai/details/publication/pub.1005089077"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:41", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000510.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs100530170014"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s100530170014'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s100530170014'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s100530170014'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s100530170014'


 

This table displays all metadata directly associated to this object as RDF triples.

75 TRIPLES      20 PREDICATES      27 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s100530170014 schema:about anzsrc-for:02
2 anzsrc-for:0206
3 schema:author Nea094f4b5242459d84994e059dd7e951
4 schema:datePublished 2001-12
5 schema:datePublishedReg 2001-12-01
6 schema:description Thermal noise of a mirror can be reduced by cold damping. The displacement is measured with a high-finesse cavity and controlled with the radiation pressure of a modulated light beam. We establish the general quantum limits of noise in cold damping mechanisms and we show that the optomechanical system allows to reach these limits. Displacement noise can be arbitrarily reduced in a narrow frequency band. In a wide-band analysis we show that thermal fluctuations are reduced as with classical damping whereas quantum zero-point fluctuations are left unchanged. The only limit of cold damping is then due to zero-point energy of the mirror.
7 schema:genre research_article
8 schema:inLanguage en
9 schema:isAccessibleForFree true
10 schema:isPartOf N104c4b2394484f4f8e0a6568777fb71e
11 N581f740aac734457933ca5dcebff91f2
12 sg:journal.1295077
13 schema:name Quantum limits of cold damping with optomechanical coupling
14 schema:pagination 399-408
15 schema:productId Nad366c2f6a3048cc8e99646f9100036f
16 Nc7e3301e2bdb452ea28350911c20f54f
17 Ne8d554eceb8c4ce3a9c2ac4610afde5d
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005089077
19 https://doi.org/10.1007/s100530170014
20 schema:sdDatePublished 2019-04-10T16:41
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher N69221e3f259e4c548907f835c0e2f188
23 schema:url http://link.springer.com/10.1007%2Fs100530170014
24 sgo:license sg:explorer/license/
25 sgo:sdDataset articles
26 rdf:type schema:ScholarlyArticle
27 N104c4b2394484f4f8e0a6568777fb71e schema:volumeNumber 17
28 rdf:type schema:PublicationVolume
29 N3a68efc3e0c940b7a7ca367815bc3ef4 rdf:first sg:person.013556655525.03
30 rdf:rest Ne4b08bd9aa714a718834ce0f3cda8f68
31 N581f740aac734457933ca5dcebff91f2 schema:issueNumber 3
32 rdf:type schema:PublicationIssue
33 N69221e3f259e4c548907f835c0e2f188 schema:name Springer Nature - SN SciGraph project
34 rdf:type schema:Organization
35 Nad366c2f6a3048cc8e99646f9100036f schema:name dimensions_id
36 schema:value pub.1005089077
37 rdf:type schema:PropertyValue
38 Nc7e3301e2bdb452ea28350911c20f54f schema:name doi
39 schema:value 10.1007/s100530170014
40 rdf:type schema:PropertyValue
41 Ne4b08bd9aa714a718834ce0f3cda8f68 rdf:first sg:person.01011760245.37
42 rdf:rest rdf:nil
43 Ne8d554eceb8c4ce3a9c2ac4610afde5d schema:name readcube_id
44 schema:value 183f47dcb227dc892916b71c9b6491c1a0fd407f9f9293bab60d73a564adca84
45 rdf:type schema:PropertyValue
46 Nea094f4b5242459d84994e059dd7e951 rdf:first sg:person.015323404135.28
47 rdf:rest N3a68efc3e0c940b7a7ca367815bc3ef4
48 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
49 schema:name Physical Sciences
50 rdf:type schema:DefinedTerm
51 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
52 schema:name Quantum Physics
53 rdf:type schema:DefinedTerm
54 sg:journal.1295077 schema:issn 1434-6060
55 1434-6079
56 schema:name The European Physical Journal D
57 rdf:type schema:Periodical
58 sg:person.01011760245.37 schema:affiliation https://www.grid.ac/institutes/grid.462576.4
59 schema:familyName Pinard
60 schema:givenName M.
61 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01011760245.37
62 rdf:type schema:Person
63 sg:person.013556655525.03 schema:affiliation https://www.grid.ac/institutes/grid.462576.4
64 schema:familyName Heidmann
65 schema:givenName A.
66 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013556655525.03
67 rdf:type schema:Person
68 sg:person.015323404135.28 schema:affiliation https://www.grid.ac/institutes/grid.462576.4
69 schema:familyName Courty
70 schema:givenName J.-M.
71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015323404135.28
72 rdf:type schema:Person
73 https://www.grid.ac/institutes/grid.462576.4 schema:alternateName Kastler-Brossel Laboratory
74 schema:name Laboratoire Kastler Brossel (website: www.spectro.jussieu.fr/Mesure), UPMC Case 74, 4 place Jussieu, 75252 Paris Cedex 05, France, FR
75 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...