Introduction of quantum finite-size effects in the Mie's theory for a multilayered metal sphere in the dipolar approximation: Application to ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2000-04

AUTHORS

J. Lermé

ABSTRACT

A mixed classical/quantum model for calculating the optical response of free and matrix-embedded multilayered metal spheres in the dipolar approximation is presented. The conduction electrons are quantum-mechanically treated in the framework of the time-dependent local-density-approximation formalism (TDLDA), whereas the surrounding matrix, the ionic metal backgrounds and the non-metallic materials are classically described through homogeneous charge distributions or/and dielectric media. Except for the TDLDA calculations, the present formalism is completely analytical and can be applied to coated spheres with any number of metal or dielectric layers. Contrary to the previous TDLDA-based models involving an inner or/and an outer dielectric medium (one or two interfaces), all the dielectric effects (screening and absorption) are self-consistently calculated. In particular, the interband transitions and the mutual interplay between the conduction and core electrons are self-consistently treated. The deficiencies of the previous models are analyzed, and the results are compared with the classical Mie's theory, over the entire spectral range. The building-up of the classical absorption spectrum, consisting of the surface plasmon resonance and the interband transitions, is clearly observed as the cluster size increases. More... »

PAGES

265-277

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s100530050548

DOI

http://dx.doi.org/10.1007/s100530050548

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1015489242


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0302", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Inorganic Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Laboratoire de Spectrom\u00e9trie Ionique et Mol\u00e9culaire", 
          "id": "https://www.grid.ac/institutes/grid.463958.5", 
          "name": [
            "Laboratoire de Spectrom\u00e9trie Ionique et Mol\u00e9culaire, CNRS and Universit\u00e9 Lyon I, B\u00e2timent 205, 43 boulevard du 11 novembre 1918, 69622 Villeurbanne Cedex, France, FR"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lerm\u00e9", 
        "givenName": "J.", 
        "id": "sg:person.013627007227.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013627007227.99"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2000-04", 
    "datePublishedReg": "2000-04-01", 
    "description": "A mixed classical/quantum model for calculating the optical response of free and matrix-embedded multilayered metal spheres in the dipolar approximation is presented. The conduction electrons are quantum-mechanically treated in the framework of the time-dependent local-density-approximation formalism (TDLDA), whereas the surrounding matrix, the ionic metal backgrounds and the non-metallic materials are classically described through homogeneous charge distributions or/and dielectric media. Except for the TDLDA calculations, the present formalism is completely analytical and can be applied to coated spheres with any number of metal or dielectric layers. Contrary to the previous TDLDA-based models involving an inner or/and an outer dielectric medium (one or two interfaces), all the dielectric effects (screening and absorption) are self-consistently calculated. In particular, the interband transitions and the mutual interplay between the conduction and core electrons are self-consistently treated. The deficiencies of the previous models are analyzed, and the results are compared with the classical Mie's theory, over the entire spectral range. The building-up of the classical absorption spectrum, consisting of the surface plasmon resonance and the interband transitions, is clearly observed as the cluster size increases.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s100530050548", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1295077", 
        "issn": [
          "1434-6060", 
          "1434-6079"
        ], 
        "name": "The European Physical Journal D", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "10"
      }
    ], 
    "name": "Introduction of quantum finite-size effects in the Mie's theory for a multilayered metal sphere in the dipolar approximation: Application to free and matrix-embedded noble metal clusters", 
    "pagination": "265-277", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "49ccbf33fc0b97f14c63ab21155a10ca514ba3c6f67bca6234a410975e0cc2a9"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s100530050548"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1015489242"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s100530050548", 
      "https://app.dimensions.ai/details/publication/pub.1015489242"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000511.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs100530050548"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s100530050548'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s100530050548'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s100530050548'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s100530050548'


 

This table displays all metadata directly associated to this object as RDF triples.

61 TRIPLES      20 PREDICATES      27 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s100530050548 schema:about anzsrc-for:03
2 anzsrc-for:0302
3 schema:author Nd746086602ae449a82a3944cba42b54b
4 schema:datePublished 2000-04
5 schema:datePublishedReg 2000-04-01
6 schema:description A mixed classical/quantum model for calculating the optical response of free and matrix-embedded multilayered metal spheres in the dipolar approximation is presented. The conduction electrons are quantum-mechanically treated in the framework of the time-dependent local-density-approximation formalism (TDLDA), whereas the surrounding matrix, the ionic metal backgrounds and the non-metallic materials are classically described through homogeneous charge distributions or/and dielectric media. Except for the TDLDA calculations, the present formalism is completely analytical and can be applied to coated spheres with any number of metal or dielectric layers. Contrary to the previous TDLDA-based models involving an inner or/and an outer dielectric medium (one or two interfaces), all the dielectric effects (screening and absorption) are self-consistently calculated. In particular, the interband transitions and the mutual interplay between the conduction and core electrons are self-consistently treated. The deficiencies of the previous models are analyzed, and the results are compared with the classical Mie's theory, over the entire spectral range. The building-up of the classical absorption spectrum, consisting of the surface plasmon resonance and the interband transitions, is clearly observed as the cluster size increases.
7 schema:genre research_article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N5229461068cc4f42acf51f66ae142ac8
11 Nb75b498d8cc2462596b5304d30121ae3
12 sg:journal.1295077
13 schema:name Introduction of quantum finite-size effects in the Mie's theory for a multilayered metal sphere in the dipolar approximation: Application to free and matrix-embedded noble metal clusters
14 schema:pagination 265-277
15 schema:productId N6b8e23b8e9a74b91ba853a3ae95b300e
16 N72e806715fee402d935e3b131a6bba23
17 N86b314a43bfb4d4f98a8fb34e6f6f4c6
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015489242
19 https://doi.org/10.1007/s100530050548
20 schema:sdDatePublished 2019-04-10T19:57
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher N7b3d93a814344c7c9ff174b3ca591a84
23 schema:url http://link.springer.com/10.1007%2Fs100530050548
24 sgo:license sg:explorer/license/
25 sgo:sdDataset articles
26 rdf:type schema:ScholarlyArticle
27 N5229461068cc4f42acf51f66ae142ac8 schema:volumeNumber 10
28 rdf:type schema:PublicationVolume
29 N6b8e23b8e9a74b91ba853a3ae95b300e schema:name readcube_id
30 schema:value 49ccbf33fc0b97f14c63ab21155a10ca514ba3c6f67bca6234a410975e0cc2a9
31 rdf:type schema:PropertyValue
32 N72e806715fee402d935e3b131a6bba23 schema:name dimensions_id
33 schema:value pub.1015489242
34 rdf:type schema:PropertyValue
35 N7b3d93a814344c7c9ff174b3ca591a84 schema:name Springer Nature - SN SciGraph project
36 rdf:type schema:Organization
37 N86b314a43bfb4d4f98a8fb34e6f6f4c6 schema:name doi
38 schema:value 10.1007/s100530050548
39 rdf:type schema:PropertyValue
40 Nb75b498d8cc2462596b5304d30121ae3 schema:issueNumber 2
41 rdf:type schema:PublicationIssue
42 Nd746086602ae449a82a3944cba42b54b rdf:first sg:person.013627007227.99
43 rdf:rest rdf:nil
44 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
45 schema:name Chemical Sciences
46 rdf:type schema:DefinedTerm
47 anzsrc-for:0302 schema:inDefinedTermSet anzsrc-for:
48 schema:name Inorganic Chemistry
49 rdf:type schema:DefinedTerm
50 sg:journal.1295077 schema:issn 1434-6060
51 1434-6079
52 schema:name The European Physical Journal D
53 rdf:type schema:Periodical
54 sg:person.013627007227.99 schema:affiliation https://www.grid.ac/institutes/grid.463958.5
55 schema:familyName Lermé
56 schema:givenName J.
57 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013627007227.99
58 rdf:type schema:Person
59 https://www.grid.ac/institutes/grid.463958.5 schema:alternateName Laboratoire de Spectrométrie Ionique et Moléculaire
60 schema:name Laboratoire de Spectrométrie Ionique et Moléculaire, CNRS and Université Lyon I, Bâtiment 205, 43 boulevard du 11 novembre 1918, 69622 Villeurbanne Cedex, France, FR
61 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...