Angular distributions in photoelectron spectroscopy of small tungsten clusters: competition between direct and thermionic emission View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1999-12

AUTHORS

J.C. Pinaré, B. Baguenard, C. Bordas, M. Broyer

ABSTRACT

Single-photon photodetachment of mass-selected Wn- clusters has been studied by velocity map imaging. Photoelectron imaging allows us to measure simultaneously the kinetic energy spectrum and the angular distribution of photoelectrons, providing a clear distinction between the isotropic thermionic emission and the anisotropic direct photoemission. A careful study of threshold electrons shows that the thermal distribution p(ε) cannot be described, even qualitatively, by a simple exponentially decreasing Boltzmann function, as is usually assumed. On the contrary, our results are in excellent agreement with more refined theoretical models. Our results indicate that the transition towards a bulk-like statistical behavior of the internal energy redistribution occurs in very small systems, because of the high density of states in metal clusters. The asymmetry parameter β of the most intense band observed in direct photoemission for each cluster decreases monotonically with size; the direct photoemission of small systems is strongly anisotropic, and becomes isotropic as the size of the system increases. This probably indicates the loss of coherence induced by electron–electron collisions occurring in large systems prior to electron–phonon coupling. More... »

PAGES

21-24

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s100530050392

DOI

http://dx.doi.org/10.1007/s100530050392

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1023291462


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Laboratoire de Spectrom\u00e9trie Ionique et Mol\u00e9culaire", 
          "id": "https://www.grid.ac/institutes/grid.463958.5", 
          "name": [
            "Laboratoire de Spectrom\u00e9trie Ionique et Mol\u00e9culaire, Universit\u00e9 Claude Bernard, Lyon 1 and CNRS, B\u00e2t. 205 43, Boulevard du 11 Novembre 1918, F-69622 Villeurbanne Cedex, France, FR"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pinar\u00e9", 
        "givenName": "J.C.", 
        "id": "sg:person.010763201301.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010763201301.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire de Spectrom\u00e9trie Ionique et Mol\u00e9culaire", 
          "id": "https://www.grid.ac/institutes/grid.463958.5", 
          "name": [
            "Laboratoire de Spectrom\u00e9trie Ionique et Mol\u00e9culaire, Universit\u00e9 Claude Bernard, Lyon 1 and CNRS, B\u00e2t. 205 43, Boulevard du 11 Novembre 1918, F-69622 Villeurbanne Cedex, France, FR"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Baguenard", 
        "givenName": "B.", 
        "id": "sg:person.0751137713.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751137713.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire de Spectrom\u00e9trie Ionique et Mol\u00e9culaire", 
          "id": "https://www.grid.ac/institutes/grid.463958.5", 
          "name": [
            "Laboratoire de Spectrom\u00e9trie Ionique et Mol\u00e9culaire, Universit\u00e9 Claude Bernard, Lyon 1 and CNRS, B\u00e2t. 205 43, Boulevard du 11 Novembre 1918, F-69622 Villeurbanne Cedex, France, FR"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bordas", 
        "givenName": "C.", 
        "id": "sg:person.015655354713.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015655354713.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire de Spectrom\u00e9trie Ionique et Mol\u00e9culaire", 
          "id": "https://www.grid.ac/institutes/grid.463958.5", 
          "name": [
            "Laboratoire de Spectrom\u00e9trie Ionique et Mol\u00e9culaire, Universit\u00e9 Claude Bernard, Lyon 1 and CNRS, B\u00e2t. 205 43, Boulevard du 11 Novembre 1918, F-69622 Villeurbanne Cedex, France, FR"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Broyer", 
        "givenName": "M.", 
        "id": "sg:person.0640745075.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640745075.62"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/bbpc.19870910223", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035077066"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1999-12", 
    "datePublishedReg": "1999-12-01", 
    "description": "Single-photon photodetachment of mass-selected Wn- clusters has been studied by velocity map imaging. Photoelectron imaging allows us to measure simultaneously the kinetic energy spectrum and the angular distribution of photoelectrons, providing a clear distinction between the isotropic thermionic emission and the anisotropic direct photoemission. A careful study of threshold electrons shows that the thermal distribution p(\u03b5) cannot be described, even qualitatively, by a simple exponentially decreasing Boltzmann function, as is usually assumed. On the contrary, our results are in excellent agreement with more refined theoretical models. Our results indicate that the transition towards a bulk-like statistical behavior of the internal energy redistribution occurs in very small systems, because of the high density of states in metal clusters. The asymmetry parameter \u03b2 of the most intense band observed in direct photoemission for each cluster decreases monotonically with size; the direct photoemission of small systems is strongly anisotropic, and becomes isotropic as the size of the system increases. This probably indicates the loss of coherence induced by electron\u2013electron collisions occurring in large systems prior to electron\u2013phonon coupling.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s100530050392", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1295077", 
        "issn": [
          "1434-6060", 
          "1434-6079"
        ], 
        "name": "The European Physical Journal D", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Angular distributions in photoelectron spectroscopy of small tungsten clusters: competition between direct and thermionic emission", 
    "pagination": "21-24", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6ef787304f856a5d9310066fce056e97e3c234fd03e59e4d359b0dff0232be22"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s100530050392"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1023291462"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s100530050392", 
      "https://app.dimensions.ai/details/publication/pub.1023291462"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000512.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs100530050392"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s100530050392'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s100530050392'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s100530050392'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s100530050392'


 

This table displays all metadata directly associated to this object as RDF triples.

85 TRIPLES      21 PREDICATES      28 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s100530050392 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author N8d1209ff32624a259ea88e6d90214d4b
4 schema:citation https://doi.org/10.1002/bbpc.19870910223
5 schema:datePublished 1999-12
6 schema:datePublishedReg 1999-12-01
7 schema:description Single-photon photodetachment of mass-selected Wn- clusters has been studied by velocity map imaging. Photoelectron imaging allows us to measure simultaneously the kinetic energy spectrum and the angular distribution of photoelectrons, providing a clear distinction between the isotropic thermionic emission and the anisotropic direct photoemission. A careful study of threshold electrons shows that the thermal distribution p(ε) cannot be described, even qualitatively, by a simple exponentially decreasing Boltzmann function, as is usually assumed. On the contrary, our results are in excellent agreement with more refined theoretical models. Our results indicate that the transition towards a bulk-like statistical behavior of the internal energy redistribution occurs in very small systems, because of the high density of states in metal clusters. The asymmetry parameter β of the most intense band observed in direct photoemission for each cluster decreases monotonically with size; the direct photoemission of small systems is strongly anisotropic, and becomes isotropic as the size of the system increases. This probably indicates the loss of coherence induced by electron–electron collisions occurring in large systems prior to electron–phonon coupling.
8 schema:genre research_article
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N0254b2dc07c24e5fa73b319904e7a0d5
12 Nd7806f2950b549aebe44bc69ce542583
13 sg:journal.1295077
14 schema:name Angular distributions in photoelectron spectroscopy of small tungsten clusters: competition between direct and thermionic emission
15 schema:pagination 21-24
16 schema:productId N88fc13549f4349d78e4103075319469b
17 Nedb14fe2a1de4f2da9689e3d3c435127
18 Nf4823b52e5eb4469a6ce733c555f5778
19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023291462
20 https://doi.org/10.1007/s100530050392
21 schema:sdDatePublished 2019-04-10T14:09
22 schema:sdLicense https://scigraph.springernature.com/explorer/license/
23 schema:sdPublisher N706df869c9044576b4dd6165636dbf5a
24 schema:url http://link.springer.com/10.1007%2Fs100530050392
25 sgo:license sg:explorer/license/
26 sgo:sdDataset articles
27 rdf:type schema:ScholarlyArticle
28 N0254b2dc07c24e5fa73b319904e7a0d5 schema:issueNumber 1
29 rdf:type schema:PublicationIssue
30 N52d8978575dd4a60a27b1c3bd9236379 rdf:first sg:person.015655354713.46
31 rdf:rest N8169a8e59975464296f35a6cc0617a77
32 N706df869c9044576b4dd6165636dbf5a schema:name Springer Nature - SN SciGraph project
33 rdf:type schema:Organization
34 N8169a8e59975464296f35a6cc0617a77 rdf:first sg:person.0640745075.62
35 rdf:rest rdf:nil
36 N88fc13549f4349d78e4103075319469b schema:name readcube_id
37 schema:value 6ef787304f856a5d9310066fce056e97e3c234fd03e59e4d359b0dff0232be22
38 rdf:type schema:PropertyValue
39 N8cbf1860ac7342a8b052b1a736df2c08 rdf:first sg:person.0751137713.37
40 rdf:rest N52d8978575dd4a60a27b1c3bd9236379
41 N8d1209ff32624a259ea88e6d90214d4b rdf:first sg:person.010763201301.52
42 rdf:rest N8cbf1860ac7342a8b052b1a736df2c08
43 Nd7806f2950b549aebe44bc69ce542583 schema:volumeNumber 9
44 rdf:type schema:PublicationVolume
45 Nedb14fe2a1de4f2da9689e3d3c435127 schema:name dimensions_id
46 schema:value pub.1023291462
47 rdf:type schema:PropertyValue
48 Nf4823b52e5eb4469a6ce733c555f5778 schema:name doi
49 schema:value 10.1007/s100530050392
50 rdf:type schema:PropertyValue
51 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
52 schema:name Physical Sciences
53 rdf:type schema:DefinedTerm
54 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
55 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
56 rdf:type schema:DefinedTerm
57 sg:journal.1295077 schema:issn 1434-6060
58 1434-6079
59 schema:name The European Physical Journal D
60 rdf:type schema:Periodical
61 sg:person.010763201301.52 schema:affiliation https://www.grid.ac/institutes/grid.463958.5
62 schema:familyName Pinaré
63 schema:givenName J.C.
64 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010763201301.52
65 rdf:type schema:Person
66 sg:person.015655354713.46 schema:affiliation https://www.grid.ac/institutes/grid.463958.5
67 schema:familyName Bordas
68 schema:givenName C.
69 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015655354713.46
70 rdf:type schema:Person
71 sg:person.0640745075.62 schema:affiliation https://www.grid.ac/institutes/grid.463958.5
72 schema:familyName Broyer
73 schema:givenName M.
74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640745075.62
75 rdf:type schema:Person
76 sg:person.0751137713.37 schema:affiliation https://www.grid.ac/institutes/grid.463958.5
77 schema:familyName Baguenard
78 schema:givenName B.
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751137713.37
80 rdf:type schema:Person
81 https://doi.org/10.1002/bbpc.19870910223 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035077066
82 rdf:type schema:CreativeWork
83 https://www.grid.ac/institutes/grid.463958.5 schema:alternateName Laboratoire de Spectrométrie Ionique et Moléculaire
84 schema:name Laboratoire de Spectrométrie Ionique et Moléculaire, Université Claude Bernard, Lyon 1 and CNRS, Bât. 205 43, Boulevard du 11 Novembre 1918, F-69622 Villeurbanne Cedex, France, FR
85 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...