Background configurations, confinement and deconfinement on a lattice with BPS monopole boundary conditions View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1999-04

AUTHORS

E.-M. Ilgenfritz, S.V. Molodtsov, M. Müller-Preussker, A.I. Veselov

ABSTRACT

Finite temperature SU(2) lattice gauge theory is investigated in a three-dimensional cubic box with fixed boundary conditions provided by a discretized, static Bogomolʼnyi–Prasad–Sommerfield (BPS) monopole solution with varying core scale \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mu$\end{document}. Using heating and cooling techniques, we establish that for discrete \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mu$\end{document}-values stable classical solutions either of self-dual or of pure magnetic type exist inside the box. Having switched on quantum fluctuations we compute the Polyakov line and other local operators. For different \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mu$\end{document} and at varying temperatures near the deconfinement transition we study the influence of the boundary condition on the vacuum inside the box. In contrast to the pure magnetic background field case, for the self-dual one we observe confinement even for temperatures quite far above the critical one. More... »

PAGES

335-342

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s100529901078

DOI

http://dx.doi.org/10.1007/s100529901078

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1008742412


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Kanazawa University", 
          "id": "https://www.grid.ac/institutes/grid.9707.9", 
          "name": [
            "Institute for Theoretical Physics, University of Kanazawa, Japan, JP"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ilgenfritz", 
        "givenName": "E.-M.", 
        "id": "sg:person.013716335220.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013716335220.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Theoretical and Experimental Physics", 
          "id": "https://www.grid.ac/institutes/grid.21626.31", 
          "name": [
            "Institute of Theoretical and Experimental Physics, Moscow, Russia, RU"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Molodtsov", 
        "givenName": "S.V.", 
        "id": "sg:person.010577667331.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010577667331.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Humboldt University of Berlin", 
          "id": "https://www.grid.ac/institutes/grid.7468.d", 
          "name": [
            "Institut f\u00fcr Physik, Humboldt-Universit\u00e4t zu Berlin, Germany, DE"
          ], 
          "type": "Organization"
        }, 
        "familyName": "M\u00fcller-Preussker", 
        "givenName": "M.", 
        "id": "sg:person.015021362315.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015021362315.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Theoretical and Experimental Physics", 
          "id": "https://www.grid.ac/institutes/grid.21626.31", 
          "name": [
            "Institute of Theoretical and Experimental Physics, Moscow, Russia, RU"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Veselov", 
        "givenName": "A.I.", 
        "id": "sg:person.016614656733.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016614656733.45"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1999-04", 
    "datePublishedReg": "1999-04-01", 
    "description": "Finite temperature SU(2) lattice gauge theory is investigated in a three-dimensional cubic box with fixed boundary conditions provided by a discretized, static Bogomol\u02bcnyi\u2013Prasad\u2013Sommerfield (BPS) monopole solution with varying core scale \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$\\mu$\\end{document}. Using heating and cooling techniques, we establish that for discrete \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$\\mu$\\end{document}-values stable classical solutions either of self-dual or of pure magnetic type exist inside the box. Having switched on quantum fluctuations we compute the Polyakov line and other local operators. For different \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$\\mu$\\end{document} and at varying temperatures near the deconfinement transition we study the influence of the boundary condition on the vacuum inside the box. In contrast to the pure magnetic background field case, for the self-dual one we observe confinement even for temperatures quite far above the critical one.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s100529901078", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1049394", 
        "issn": [
          "1434-6044", 
          "1434-6052"
        ], 
        "name": "The European Physical Journal C", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "Background configurations, confinement and deconfinement on a lattice with BPS monopole boundary conditions", 
    "pagination": "335-342", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "29a6f4a9f29a373307b4b93ba44c5337935a032fdf15c1b28a7411b455915050"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s100529901078"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1008742412"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s100529901078", 
      "https://app.dimensions.ai/details/publication/pub.1008742412"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000486.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s100529901078"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s100529901078'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s100529901078'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s100529901078'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s100529901078'


 

This table displays all metadata directly associated to this object as RDF triples.

88 TRIPLES      20 PREDICATES      27 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s100529901078 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author N540136a9e18f4b5ea4572b3adaef0b2d
4 schema:datePublished 1999-04
5 schema:datePublishedReg 1999-04-01
6 schema:description Finite temperature SU(2) lattice gauge theory is investigated in a three-dimensional cubic box with fixed boundary conditions provided by a discretized, static Bogomolʼnyi–Prasad–Sommerfield (BPS) monopole solution with varying core scale \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mu$\end{document}. Using heating and cooling techniques, we establish that for discrete \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mu$\end{document}-values stable classical solutions either of self-dual or of pure magnetic type exist inside the box. Having switched on quantum fluctuations we compute the Polyakov line and other local operators. For different \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mu$\end{document} and at varying temperatures near the deconfinement transition we study the influence of the boundary condition on the vacuum inside the box. In contrast to the pure magnetic background field case, for the self-dual one we observe confinement even for temperatures quite far above the critical one.
7 schema:genre research_article
8 schema:inLanguage en
9 schema:isAccessibleForFree true
10 schema:isPartOf N72aec228e7d245f9ad027d19d753d611
11 Nd6a6b2d1d6e64b489e69d9405d567015
12 sg:journal.1049394
13 schema:name Background configurations, confinement and deconfinement on a lattice with BPS monopole boundary conditions
14 schema:pagination 335-342
15 schema:productId N5928768e335a4c95b6a2d7216a274eb1
16 Na86e5e6bb29a49ed803bd7a4d8403777
17 Neecb13d5f26c4e988e75f58f84ebc2a4
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008742412
19 https://doi.org/10.1007/s100529901078
20 schema:sdDatePublished 2019-04-10T14:54
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher Nd46abd6613ef4a8d928a7719bc34ed11
23 schema:url http://link.springer.com/10.1007/s100529901078
24 sgo:license sg:explorer/license/
25 sgo:sdDataset articles
26 rdf:type schema:ScholarlyArticle
27 N540136a9e18f4b5ea4572b3adaef0b2d rdf:first sg:person.013716335220.75
28 rdf:rest Ne4b6a89b4eea408abd62fa51227c4060
29 N5928768e335a4c95b6a2d7216a274eb1 schema:name doi
30 schema:value 10.1007/s100529901078
31 rdf:type schema:PropertyValue
32 N72aec228e7d245f9ad027d19d753d611 schema:volumeNumber 8
33 rdf:type schema:PublicationVolume
34 Na86e5e6bb29a49ed803bd7a4d8403777 schema:name readcube_id
35 schema:value 29a6f4a9f29a373307b4b93ba44c5337935a032fdf15c1b28a7411b455915050
36 rdf:type schema:PropertyValue
37 Nbc8667818d9543f1855c68297ce879b7 rdf:first sg:person.016614656733.45
38 rdf:rest rdf:nil
39 Nd46abd6613ef4a8d928a7719bc34ed11 schema:name Springer Nature - SN SciGraph project
40 rdf:type schema:Organization
41 Nd6a6b2d1d6e64b489e69d9405d567015 schema:issueNumber 2
42 rdf:type schema:PublicationIssue
43 Ne4b6a89b4eea408abd62fa51227c4060 rdf:first sg:person.010577667331.62
44 rdf:rest Nfa9159e7de3849b88fbffa7646c8fee3
45 Neecb13d5f26c4e988e75f58f84ebc2a4 schema:name dimensions_id
46 schema:value pub.1008742412
47 rdf:type schema:PropertyValue
48 Nfa9159e7de3849b88fbffa7646c8fee3 rdf:first sg:person.015021362315.48
49 rdf:rest Nbc8667818d9543f1855c68297ce879b7
50 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
51 schema:name Physical Sciences
52 rdf:type schema:DefinedTerm
53 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
54 schema:name Other Physical Sciences
55 rdf:type schema:DefinedTerm
56 sg:journal.1049394 schema:issn 1434-6044
57 1434-6052
58 schema:name The European Physical Journal C
59 rdf:type schema:Periodical
60 sg:person.010577667331.62 schema:affiliation https://www.grid.ac/institutes/grid.21626.31
61 schema:familyName Molodtsov
62 schema:givenName S.V.
63 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010577667331.62
64 rdf:type schema:Person
65 sg:person.013716335220.75 schema:affiliation https://www.grid.ac/institutes/grid.9707.9
66 schema:familyName Ilgenfritz
67 schema:givenName E.-M.
68 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013716335220.75
69 rdf:type schema:Person
70 sg:person.015021362315.48 schema:affiliation https://www.grid.ac/institutes/grid.7468.d
71 schema:familyName Müller-Preussker
72 schema:givenName M.
73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015021362315.48
74 rdf:type schema:Person
75 sg:person.016614656733.45 schema:affiliation https://www.grid.ac/institutes/grid.21626.31
76 schema:familyName Veselov
77 schema:givenName A.I.
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016614656733.45
79 rdf:type schema:Person
80 https://www.grid.ac/institutes/grid.21626.31 schema:alternateName Institute for Theoretical and Experimental Physics
81 schema:name Institute of Theoretical and Experimental Physics, Moscow, Russia, RU
82 rdf:type schema:Organization
83 https://www.grid.ac/institutes/grid.7468.d schema:alternateName Humboldt University of Berlin
84 schema:name Institut für Physik, Humboldt-Universität zu Berlin, Germany, DE
85 rdf:type schema:Organization
86 https://www.grid.ac/institutes/grid.9707.9 schema:alternateName Kanazawa University
87 schema:name Institute for Theoretical Physics, University of Kanazawa, Japan, JP
88 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...