Ontology type: schema:ScholarlyArticle Open Access: True
1998-09
AUTHORS ABSTRACT. Dynamical parton densities, generated radiatively from valence-like inputs at some low resolution scale, are confronted with recent small-x data on deep inelastic and other hard scattering processes. It is shown that within theoretical uncertainties our previous (1994) dynamical/radiative parton distributions are compatible with most recent data and still applicable within the restricted accuracy margins of the presently available next-to-leading order calculations. Due to recent high precision measurements we also present an updated, more accurate, version of our (valence-like) dynamical input distributions. Furthermore, our perturbatively stable parameter-free dynamical predictions are extended to the extremely small-x region, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $10^{-8} \lesssim x \lesssim 10^{-5}$\end{document}, relevant to questions concerning ultra-high-energy cosmic ray and neutrino astronomy. More... »
PAGES461-470
http://scigraph.springernature.com/pub.10.1007/s100529800978
DOIhttp://dx.doi.org/10.1007/s100529800978
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1010724892
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Other Physical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Institut f\u00fcr Physik, Universit\u00e4t Dortmund, D-44221 Dortmund, Germany, DE",
"id": "http://www.grid.ac/institutes/grid.5675.1",
"name": [
"Institut f\u00fcr Physik, Universit\u00e4t Dortmund, D-44221 Dortmund, Germany, DE"
],
"type": "Organization"
},
"familyName": "Gl\u00fcck",
"givenName": "M.",
"id": "sg:person.01102507703.31",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01102507703.31"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institut f\u00fcr Physik, Universit\u00e4t Dortmund, D-44221 Dortmund, Germany, DE",
"id": "http://www.grid.ac/institutes/grid.5675.1",
"name": [
"Institut f\u00fcr Physik, Universit\u00e4t Dortmund, D-44221 Dortmund, Germany, DE"
],
"type": "Organization"
},
"familyName": "Reya",
"givenName": "E.",
"id": "sg:person.01366257165.44",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01366257165.44"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institut f\u00fcr Theoretische Physik, Universit\u00e4t W\u00fcrzburg, Am Hubland, D-97074 W\u00fcrzburg, Germany, DE",
"id": "http://www.grid.ac/institutes/grid.8379.5",
"name": [
"Institut f\u00fcr Theoretische Physik, Universit\u00e4t W\u00fcrzburg, Am Hubland, D-97074 W\u00fcrzburg, Germany, DE"
],
"type": "Organization"
},
"familyName": "Vogt",
"givenName": "A.",
"id": "sg:person.0616573130.34",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0616573130.34"
],
"type": "Person"
}
],
"datePublished": "1998-09",
"datePublishedReg": "1998-09-01",
"description": "Abstract. Dynamical parton densities, generated radiatively from valence-like inputs at some low resolution scale, are confronted with recent small-x data on deep inelastic and other hard scattering processes. It is shown that within theoretical uncertainties our previous (1994) dynamical/radiative parton distributions are compatible with most recent data and still applicable within the restricted accuracy margins of the presently available next-to-leading order calculations. Due to recent high precision measurements we also present an updated, more accurate, version of our (valence-like) dynamical input distributions. Furthermore, our perturbatively stable parameter-free dynamical predictions are extended to the extremely small-x region, \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$10^{-8} \\lesssim x \\lesssim 10^{-5}$\\end{document}, relevant to questions concerning ultra-high-energy cosmic ray and neutrino astronomy.",
"genre": "article",
"id": "sg:pub.10.1007/s100529800978",
"inLanguage": "en",
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1049394",
"issn": [
"1434-6044",
"1434-6052"
],
"name": "European Physical Journal C",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "3",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "5"
}
],
"keywords": [
"energy cosmic rays",
"parton distributions",
"recent high-precision measurements",
"dynamical parton distributions",
"high-precision measurements",
"neutrino astronomy",
"cosmic rays",
"low resolution scale",
"precision measurements",
"theoretical uncertainties",
"dynamical predictions",
"order calculations",
"input distribution",
"accuracy margin",
"resolution scale",
"partons",
"astronomy",
"rays",
"calculations",
"distribution",
"uncertainty",
"measurements",
"prediction",
"version",
"input",
"region",
"most recent data",
"data",
"scale",
"recent data",
"process",
"questions",
"margin"
],
"name": "Dynamical parton distributions revisited",
"pagination": "461-470",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1010724892"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s100529800978"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s100529800978",
"https://app.dimensions.ai/details/publication/pub.1010724892"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:20",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_286.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s100529800978"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s100529800978'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s100529800978'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s100529800978'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s100529800978'
This table displays all metadata directly associated to this object as RDF triples.
108 TRIPLES
21 PREDICATES
59 URIs
51 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s100529800978 | schema:about | anzsrc-for:02 |
2 | ″ | ″ | anzsrc-for:0299 |
3 | ″ | schema:author | N35199d8dcf364a7ca6412a94cbe70187 |
4 | ″ | schema:datePublished | 1998-09 |
5 | ″ | schema:datePublishedReg | 1998-09-01 |
6 | ″ | schema:description | Abstract. Dynamical parton densities, generated radiatively from valence-like inputs at some low resolution scale, are confronted with recent small-x data on deep inelastic and other hard scattering processes. It is shown that within theoretical uncertainties our previous (1994) dynamical/radiative parton distributions are compatible with most recent data and still applicable within the restricted accuracy margins of the presently available next-to-leading order calculations. Due to recent high precision measurements we also present an updated, more accurate, version of our (valence-like) dynamical input distributions. Furthermore, our perturbatively stable parameter-free dynamical predictions are extended to the extremely small-x region, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $10^{-8} \lesssim x \lesssim 10^{-5}$\end{document}, relevant to questions concerning ultra-high-energy cosmic ray and neutrino astronomy. |
7 | ″ | schema:genre | article |
8 | ″ | schema:inLanguage | en |
9 | ″ | schema:isAccessibleForFree | true |
10 | ″ | schema:isPartOf | N41113ee013be469989e9e434ad03d25d |
11 | ″ | ″ | Nd0ae5b5731a54703aaf94549029949ea |
12 | ″ | ″ | sg:journal.1049394 |
13 | ″ | schema:keywords | accuracy margin |
14 | ″ | ″ | astronomy |
15 | ″ | ″ | calculations |
16 | ″ | ″ | cosmic rays |
17 | ″ | ″ | data |
18 | ″ | ″ | distribution |
19 | ″ | ″ | dynamical parton distributions |
20 | ″ | ″ | dynamical predictions |
21 | ″ | ″ | energy cosmic rays |
22 | ″ | ″ | high-precision measurements |
23 | ″ | ″ | input |
24 | ″ | ″ | input distribution |
25 | ″ | ″ | low resolution scale |
26 | ″ | ″ | margin |
27 | ″ | ″ | measurements |
28 | ″ | ″ | most recent data |
29 | ″ | ″ | neutrino astronomy |
30 | ″ | ″ | order calculations |
31 | ″ | ″ | parton distributions |
32 | ″ | ″ | partons |
33 | ″ | ″ | precision measurements |
34 | ″ | ″ | prediction |
35 | ″ | ″ | process |
36 | ″ | ″ | questions |
37 | ″ | ″ | rays |
38 | ″ | ″ | recent data |
39 | ″ | ″ | recent high-precision measurements |
40 | ″ | ″ | region |
41 | ″ | ″ | resolution scale |
42 | ″ | ″ | scale |
43 | ″ | ″ | theoretical uncertainties |
44 | ″ | ″ | uncertainty |
45 | ″ | ″ | version |
46 | ″ | schema:name | Dynamical parton distributions revisited |
47 | ″ | schema:pagination | 461-470 |
48 | ″ | schema:productId | N5afc243012224bf382a53ddf878c0ab0 |
49 | ″ | ″ | Ncb0aa671f1044e31bcf09f1e1fa2f6a3 |
50 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1010724892 |
51 | ″ | ″ | https://doi.org/10.1007/s100529800978 |
52 | ″ | schema:sdDatePublished | 2022-05-20T07:20 |
53 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
54 | ″ | schema:sdPublisher | Nb144e109de2040c49f87609e9a7eff1d |
55 | ″ | schema:url | https://doi.org/10.1007/s100529800978 |
56 | ″ | sgo:license | sg:explorer/license/ |
57 | ″ | sgo:sdDataset | articles |
58 | ″ | rdf:type | schema:ScholarlyArticle |
59 | N20b7eac0082140058ec6138b4e3e0fa5 | rdf:first | sg:person.0616573130.34 |
60 | ″ | rdf:rest | rdf:nil |
61 | N35199d8dcf364a7ca6412a94cbe70187 | rdf:first | sg:person.01102507703.31 |
62 | ″ | rdf:rest | Nc52e30528899459296dddc3d3e25ce4e |
63 | N41113ee013be469989e9e434ad03d25d | schema:volumeNumber | 5 |
64 | ″ | rdf:type | schema:PublicationVolume |
65 | N5afc243012224bf382a53ddf878c0ab0 | schema:name | dimensions_id |
66 | ″ | schema:value | pub.1010724892 |
67 | ″ | rdf:type | schema:PropertyValue |
68 | Nb144e109de2040c49f87609e9a7eff1d | schema:name | Springer Nature - SN SciGraph project |
69 | ″ | rdf:type | schema:Organization |
70 | Nc52e30528899459296dddc3d3e25ce4e | rdf:first | sg:person.01366257165.44 |
71 | ″ | rdf:rest | N20b7eac0082140058ec6138b4e3e0fa5 |
72 | Ncb0aa671f1044e31bcf09f1e1fa2f6a3 | schema:name | doi |
73 | ″ | schema:value | 10.1007/s100529800978 |
74 | ″ | rdf:type | schema:PropertyValue |
75 | Nd0ae5b5731a54703aaf94549029949ea | schema:issueNumber | 3 |
76 | ″ | rdf:type | schema:PublicationIssue |
77 | anzsrc-for:02 | schema:inDefinedTermSet | anzsrc-for: |
78 | ″ | schema:name | Physical Sciences |
79 | ″ | rdf:type | schema:DefinedTerm |
80 | anzsrc-for:0299 | schema:inDefinedTermSet | anzsrc-for: |
81 | ″ | schema:name | Other Physical Sciences |
82 | ″ | rdf:type | schema:DefinedTerm |
83 | sg:journal.1049394 | schema:issn | 1434-6044 |
84 | ″ | ″ | 1434-6052 |
85 | ″ | schema:name | European Physical Journal C |
86 | ″ | schema:publisher | Springer Nature |
87 | ″ | rdf:type | schema:Periodical |
88 | sg:person.01102507703.31 | schema:affiliation | grid-institutes:grid.5675.1 |
89 | ″ | schema:familyName | Glück |
90 | ″ | schema:givenName | M. |
91 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01102507703.31 |
92 | ″ | rdf:type | schema:Person |
93 | sg:person.01366257165.44 | schema:affiliation | grid-institutes:grid.5675.1 |
94 | ″ | schema:familyName | Reya |
95 | ″ | schema:givenName | E. |
96 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01366257165.44 |
97 | ″ | rdf:type | schema:Person |
98 | sg:person.0616573130.34 | schema:affiliation | grid-institutes:grid.8379.5 |
99 | ″ | schema:familyName | Vogt |
100 | ″ | schema:givenName | A. |
101 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0616573130.34 |
102 | ″ | rdf:type | schema:Person |
103 | grid-institutes:grid.5675.1 | schema:alternateName | Institut für Physik, Universität Dortmund, D-44221 Dortmund, Germany, DE |
104 | ″ | schema:name | Institut für Physik, Universität Dortmund, D-44221 Dortmund, Germany, DE |
105 | ″ | rdf:type | schema:Organization |
106 | grid-institutes:grid.8379.5 | schema:alternateName | Institut für Theoretische Physik, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany, DE |
107 | ″ | schema:name | Institut für Theoretische Physik, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany, DE |
108 | ″ | rdf:type | schema:Organization |