Predictions for high-energy real and virtual photon–photon scattering from color dipole BFKL–Regge factorization View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2002-01

AUTHORS

N.N. Nikolaev, J. Speth, V.R. Zoller

ABSTRACT

High-energy virtual photon–virtual photon scattering can be viewed as an interaction of small size color dipoles from the beam and target photons, which makes \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\gamma^{*}\gamma^{*}, \gamma^{*}\gamma$\end{document} scattering at high energies (LEP, LEP200 and NLC) an indispensable probe of the short distance properties of the QCD pomeron exchange. Based on the color dipole representation, we investigate the consequences for the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\gamma^{*}\gamma^{*},\gamma^{*}\gamma$\end{document} scattering of the incorporation of asymptotic freedom into the BFKL equation which makes the QCD pomeron a series of isolated poles in the angular momentum plane. The emerging color dipole BFKL–Regge factorization allows us to relate in a model-independent way the contributions of each BFKL pole to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\gamma^{*}\gamma^{*},\gamma^{*} \gamma$\end{document} scattering and DIS off protons. Numerical predictions based on our early works on the color dipole BFKL phenomenology of DIS on protons are in good agreement with the experimental data on the photon structure function \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$F_{2\gamma}$\end{document} and the most recent data on the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\gamma^*\gamma^*$\end{document} cross section \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sigma^{\gamma^*\gamma^*}(Y)$\end{document} from the OPAL and L3 experiments at LEP200. We discuss the role of non-perturbative dynamics and predict a pronounced effect of the Regge-factorization breaking due to large unfactorizable non-perturbative corrections to the perturbative vacuum exchange. We comment on the salient features of the BFKL–Regge expansion for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\gamma^{*}\gamma^{*},\gamma^{*}\gamma$\end{document} scattering including the issue of the decoupling of subleading BFKL poles and the soft plus rightmost hard BFKL pole dominance. More... »

PAGES

637-646

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s100520100804

DOI

http://dx.doi.org/10.1007/s100520100804

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1051069673


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Forschungszentrum J\u00fclich", 
          "id": "https://www.grid.ac/institutes/grid.8385.6", 
          "name": [
            "Institut f\u00fcr Kernphysik, Forschungszentrum J\u00fclich, 52425 J\u00fclich, Germany, DE"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nikolaev", 
        "givenName": "N.N.", 
        "id": "sg:person.011254113621.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011254113621.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Forschungszentrum J\u00fclich", 
          "id": "https://www.grid.ac/institutes/grid.8385.6", 
          "name": [
            "Institut f\u00fcr Kernphysik, Forschungszentrum J\u00fclich, 52425 J\u00fclich, Germany, DE"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Speth", 
        "givenName": "J.", 
        "id": "sg:person.01267434315.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01267434315.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Theoretical and Experimental Physics", 
          "id": "https://www.grid.ac/institutes/grid.21626.31", 
          "name": [
            "Institute for Theoretical and Experimental Physics, Moscow 117218, Russia, RU"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zoller", 
        "givenName": "V.R.", 
        "id": "sg:person.07653611431.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07653611431.49"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2002-01", 
    "datePublishedReg": "2002-01-01", 
    "description": "High-energy virtual photon\u2013virtual photon scattering can be viewed as an interaction of small size color dipoles from the beam and target photons, which makes \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$\\gamma^{*}\\gamma^{*}, \\gamma^{*}\\gamma$\\end{document} scattering at high energies (LEP, LEP200 and NLC) an indispensable probe of the short distance properties of the QCD pomeron exchange. Based on the color dipole representation, we investigate the consequences for the \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$\\gamma^{*}\\gamma^{*},\\gamma^{*}\\gamma$\\end{document} scattering of the incorporation of asymptotic freedom into the BFKL equation which makes the QCD pomeron a series of isolated poles in the angular momentum plane. The emerging color dipole BFKL\u2013Regge factorization allows us to relate in a model-independent way the contributions of each BFKL pole to \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$\\gamma^{*}\\gamma^{*},\\gamma^{*} \\gamma$\\end{document} scattering and DIS off protons. Numerical predictions based on our early works on the color dipole BFKL phenomenology of DIS on protons are in good agreement with the experimental data on the photon structure function \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$F_{2\\gamma}$\\end{document} and the most recent data on the \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$\\gamma^*\\gamma^*$\\end{document} cross section \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$\\sigma^{\\gamma^*\\gamma^*}(Y)$\\end{document} from the OPAL and L3 experiments at LEP200. We discuss the role of non-perturbative dynamics and predict a pronounced effect of the Regge-factorization breaking due to large unfactorizable non-perturbative corrections to the perturbative vacuum exchange. We comment on the salient features of the BFKL\u2013Regge expansion for \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$\\gamma^{*}\\gamma^{*},\\gamma^{*}\\gamma$\\end{document} scattering including the issue of the decoupling of subleading BFKL poles and the soft plus rightmost hard BFKL pole dominance.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s100520100804", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1049394", 
        "issn": [
          "1434-6044", 
          "1434-6052"
        ], 
        "name": "The European Physical Journal C", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "22"
      }
    ], 
    "name": "Predictions for high-energy real and virtual photon\u2013photon scattering from color dipole BFKL\u2013Regge factorization", 
    "pagination": "637-646", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f347033dbf14d5261dedd63f3a57b918e60eb85b1e3c273e727e3b788aa04dc7"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s100520100804"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1051069673"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s100520100804", 
      "https://app.dimensions.ai/details/publication/pub.1051069673"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000483.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s100520100804"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s100520100804'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s100520100804'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s100520100804'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s100520100804'


 

This table displays all metadata directly associated to this object as RDF triples.

78 TRIPLES      20 PREDICATES      27 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s100520100804 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author N70abbf0cbea84bf5a28f2d22b48ed2c9
4 schema:datePublished 2002-01
5 schema:datePublishedReg 2002-01-01
6 schema:description High-energy virtual photon–virtual photon scattering can be viewed as an interaction of small size color dipoles from the beam and target photons, which makes \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\gamma^{*}\gamma^{*}, \gamma^{*}\gamma$\end{document} scattering at high energies (LEP, LEP200 and NLC) an indispensable probe of the short distance properties of the QCD pomeron exchange. Based on the color dipole representation, we investigate the consequences for the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\gamma^{*}\gamma^{*},\gamma^{*}\gamma$\end{document} scattering of the incorporation of asymptotic freedom into the BFKL equation which makes the QCD pomeron a series of isolated poles in the angular momentum plane. The emerging color dipole BFKL–Regge factorization allows us to relate in a model-independent way the contributions of each BFKL pole to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\gamma^{*}\gamma^{*},\gamma^{*} \gamma$\end{document} scattering and DIS off protons. Numerical predictions based on our early works on the color dipole BFKL phenomenology of DIS on protons are in good agreement with the experimental data on the photon structure function \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$F_{2\gamma}$\end{document} and the most recent data on the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\gamma^*\gamma^*$\end{document} cross section \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sigma^{\gamma^*\gamma^*}(Y)$\end{document} from the OPAL and L3 experiments at LEP200. We discuss the role of non-perturbative dynamics and predict a pronounced effect of the Regge-factorization breaking due to large unfactorizable non-perturbative corrections to the perturbative vacuum exchange. We comment on the salient features of the BFKL–Regge expansion for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\gamma^{*}\gamma^{*},\gamma^{*}\gamma$\end{document} scattering including the issue of the decoupling of subleading BFKL poles and the soft plus rightmost hard BFKL pole dominance.
7 schema:genre research_article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N1c78a0ea9b014a86a982bb0ac3c5b72d
11 N92041bb3fc9a4cdba1f426e5d6e644bc
12 sg:journal.1049394
13 schema:name Predictions for high-energy real and virtual photon–photon scattering from color dipole BFKL–Regge factorization
14 schema:pagination 637-646
15 schema:productId N938a2e81f6f94339a0b2bab29be96429
16 Nbe88605b502247679a3e9c4327c40018
17 Ndfd383eb261548bfa9f13ae654108f61
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051069673
19 https://doi.org/10.1007/s100520100804
20 schema:sdDatePublished 2019-04-10T18:14
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher N4cecf4a142ef42de8de3fb999dfa7cd5
23 schema:url http://link.springer.com/10.1007/s100520100804
24 sgo:license sg:explorer/license/
25 sgo:sdDataset articles
26 rdf:type schema:ScholarlyArticle
27 N1c78a0ea9b014a86a982bb0ac3c5b72d schema:issueNumber 4
28 rdf:type schema:PublicationIssue
29 N1ca434ee923f4a7ab0c14f236df25cd0 rdf:first sg:person.07653611431.49
30 rdf:rest rdf:nil
31 N4cecf4a142ef42de8de3fb999dfa7cd5 schema:name Springer Nature - SN SciGraph project
32 rdf:type schema:Organization
33 N70abbf0cbea84bf5a28f2d22b48ed2c9 rdf:first sg:person.011254113621.16
34 rdf:rest N91a5ce7f3e22402d947cd658180901d4
35 N91a5ce7f3e22402d947cd658180901d4 rdf:first sg:person.01267434315.18
36 rdf:rest N1ca434ee923f4a7ab0c14f236df25cd0
37 N92041bb3fc9a4cdba1f426e5d6e644bc schema:volumeNumber 22
38 rdf:type schema:PublicationVolume
39 N938a2e81f6f94339a0b2bab29be96429 schema:name readcube_id
40 schema:value f347033dbf14d5261dedd63f3a57b918e60eb85b1e3c273e727e3b788aa04dc7
41 rdf:type schema:PropertyValue
42 Nbe88605b502247679a3e9c4327c40018 schema:name dimensions_id
43 schema:value pub.1051069673
44 rdf:type schema:PropertyValue
45 Ndfd383eb261548bfa9f13ae654108f61 schema:name doi
46 schema:value 10.1007/s100520100804
47 rdf:type schema:PropertyValue
48 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
49 schema:name Physical Sciences
50 rdf:type schema:DefinedTerm
51 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
52 schema:name Other Physical Sciences
53 rdf:type schema:DefinedTerm
54 sg:journal.1049394 schema:issn 1434-6044
55 1434-6052
56 schema:name The European Physical Journal C
57 rdf:type schema:Periodical
58 sg:person.011254113621.16 schema:affiliation https://www.grid.ac/institutes/grid.8385.6
59 schema:familyName Nikolaev
60 schema:givenName N.N.
61 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011254113621.16
62 rdf:type schema:Person
63 sg:person.01267434315.18 schema:affiliation https://www.grid.ac/institutes/grid.8385.6
64 schema:familyName Speth
65 schema:givenName J.
66 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01267434315.18
67 rdf:type schema:Person
68 sg:person.07653611431.49 schema:affiliation https://www.grid.ac/institutes/grid.21626.31
69 schema:familyName Zoller
70 schema:givenName V.R.
71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07653611431.49
72 rdf:type schema:Person
73 https://www.grid.ac/institutes/grid.21626.31 schema:alternateName Institute for Theoretical and Experimental Physics
74 schema:name Institute for Theoretical and Experimental Physics, Moscow 117218, Russia, RU
75 rdf:type schema:Organization
76 https://www.grid.ac/institutes/grid.8385.6 schema:alternateName Forschungszentrum Jülich
77 schema:name Institut für Kernphysik, Forschungszentrum Jülich, 52425 Jülich, Germany, DE
78 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...