Predictions for high-energy real and virtual photon–photon scattering from color dipole BFKL–Regge factorization View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2002-01

AUTHORS

N.N. Nikolaev, J. Speth, V.R. Zoller

ABSTRACT

. High-energy virtual photon–virtual photon scattering can be viewed as an interaction of small size color dipoles from the beam and target photons, which makes \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\gamma^{*}\gamma^{*}, \gamma^{*}\gamma$\end{document} scattering at high energies (LEP, LEP200 and NLC) an indispensable probe of the short distance properties of the QCD pomeron exchange. Based on the color dipole representation, we investigate the consequences for the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\gamma^{*}\gamma^{*},\gamma^{*}\gamma$\end{document} scattering of the incorporation of asymptotic freedom into the BFKL equation which makes the QCD pomeron a series of isolated poles in the angular momentum plane. The emerging color dipole BFKL–Regge factorization allows us to relate in a model-independent way the contributions of each BFKL pole to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\gamma^{*}\gamma^{*},\gamma^{*} \gamma$\end{document} scattering and DIS off protons. Numerical predictions based on our early works on the color dipole BFKL phenomenology of DIS on protons are in good agreement with the experimental data on the photon structure function \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$F_{2\gamma}$\end{document} and the most recent data on the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\gamma^*\gamma^*$\end{document} cross section \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sigma^{\gamma^*\gamma^*}(Y)$\end{document} from the OPAL and L3 experiments at LEP200. We discuss the role of non-perturbative dynamics and predict a pronounced effect of the Regge-factorization breaking due to large unfactorizable non-perturbative corrections to the perturbative vacuum exchange. We comment on the salient features of the BFKL–Regge expansion for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\gamma^{*}\gamma^{*},\gamma^{*}\gamma$\end{document} scattering including the issue of the decoupling of subleading BFKL poles and the soft plus rightmost hard BFKL pole dominance. More... »

PAGES

637-646

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s100520100804

DOI

http://dx.doi.org/10.1007/s100520100804

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1051069673


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institut f\u00fcr Kernphysik, Forschungszentrum J\u00fclich, 52425 J\u00fclich, Germany, DE", 
          "id": "http://www.grid.ac/institutes/grid.8385.6", 
          "name": [
            "Institut f\u00fcr Kernphysik, Forschungszentrum J\u00fclich, 52425 J\u00fclich, Germany, DE"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nikolaev", 
        "givenName": "N.N.", 
        "id": "sg:person.011254113621.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011254113621.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut f\u00fcr Kernphysik, Forschungszentrum J\u00fclich, 52425 J\u00fclich, Germany, DE", 
          "id": "http://www.grid.ac/institutes/grid.8385.6", 
          "name": [
            "Institut f\u00fcr Kernphysik, Forschungszentrum J\u00fclich, 52425 J\u00fclich, Germany, DE"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Speth", 
        "givenName": "J.", 
        "id": "sg:person.01267434315.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01267434315.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Theoretical and Experimental Physics, Moscow 117218, Russia, RU", 
          "id": "http://www.grid.ac/institutes/grid.21626.31", 
          "name": [
            "Institute for Theoretical and Experimental Physics, Moscow 117218, Russia, RU"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zoller", 
        "givenName": "V.R.", 
        "id": "sg:person.07653611431.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07653611431.49"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2002-01", 
    "datePublishedReg": "2002-01-01", 
    "description": "Abstract. High-energy virtual photon\u2013virtual photon scattering can be viewed as an interaction of small size color dipoles from the beam and target photons, which makes \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\gamma^{*}\\gamma^{*}, \\gamma^{*}\\gamma$\\end{document} scattering at high energies (LEP, LEP200 and NLC) an indispensable probe of the short distance properties of the QCD pomeron exchange. Based on the color dipole representation, we investigate the consequences for the \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\gamma^{*}\\gamma^{*},\\gamma^{*}\\gamma$\\end{document} scattering of the incorporation of asymptotic freedom into the BFKL equation which makes the QCD pomeron a series of isolated poles in the angular momentum plane. The emerging color dipole BFKL\u2013Regge factorization allows us to relate in a model-independent way the contributions of each BFKL pole to \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\gamma^{*}\\gamma^{*},\\gamma^{*} \\gamma$\\end{document} scattering and DIS off protons. Numerical predictions based on our early works on the color dipole BFKL phenomenology of DIS on protons are in good agreement with the experimental data on the photon structure function \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$F_{2\\gamma}$\\end{document} and the most recent data on the \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\gamma^*\\gamma^*$\\end{document} cross section \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\sigma^{\\gamma^*\\gamma^*}(Y)$\\end{document} from the OPAL and L3 experiments at LEP200. We discuss the role of non-perturbative dynamics and predict a pronounced effect of the Regge-factorization breaking due to large unfactorizable non-perturbative corrections to the perturbative vacuum exchange. We comment on the salient features of the BFKL\u2013Regge expansion for \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\gamma^{*}\\gamma^{*},\\gamma^{*}\\gamma$\\end{document} scattering including the issue of the decoupling of subleading BFKL poles and the soft plus rightmost hard BFKL pole dominance.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s100520100804", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1049394", 
        "issn": [
          "1434-6044", 
          "1434-6052"
        ], 
        "name": "European Physical Journal C", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "22"
      }
    ], 
    "keywords": [
      "photon-photon", 
      "model-independent way", 
      "photon structure function", 
      "non-perturbative dynamics", 
      "photon scattering", 
      "color dipole representation", 
      "indispensable probe", 
      "high energy", 
      "cross sections", 
      "L3 experiment", 
      "scattering", 
      "dipole representation", 
      "vacuum exchange", 
      "QCD pomeron", 
      "Pomeron exchange", 
      "color dipoles", 
      "momentum plane", 
      "structure functions", 
      "asymptotic freedom", 
      "non-perturbative corrections", 
      "protons", 
      "short distance properties", 
      "good agreement", 
      "experimental data", 
      "angular momentum plane", 
      "photons", 
      "beam", 
      "dipole", 
      "energy", 
      "breaking", 
      "Pomeron", 
      "earlier work", 
      "LEP200", 
      "probe", 
      "opals", 
      "plane", 
      "agreement", 
      "pole", 
      "phenomenology", 
      "dynamics", 
      "decoupling", 
      "correction", 
      "prediction", 
      "sections", 
      "salient features", 
      "interaction", 
      "properties", 
      "exchange", 
      "pole dominance", 
      "BFKL equation", 
      "experiments", 
      "numerical predictions", 
      "freedom", 
      "equations", 
      "contribution", 
      "pronounced effect", 
      "expansion", 
      "work", 
      "DIS", 
      "features", 
      "function", 
      "effect", 
      "data", 
      "recent data", 
      "way", 
      "incorporation", 
      "factorization", 
      "consequences", 
      "series", 
      "dominance", 
      "representation", 
      "role", 
      "issues", 
      "distance properties", 
      "High-energy virtual photon\u2013virtual photon scattering", 
      "virtual photon\u2013virtual photon scattering", 
      "photon\u2013virtual photon scattering", 
      "small size color dipoles", 
      "size color dipoles", 
      "QCD pomeron exchange", 
      "color dipole BFKL\u2013Regge factorization", 
      "dipole BFKL\u2013Regge factorization", 
      "BFKL\u2013Regge factorization", 
      "BFKL pole", 
      "color dipole BFKL phenomenology", 
      "dipole BFKL phenomenology", 
      "BFKL phenomenology", 
      "Regge-factorization breaking", 
      "large unfactorizable non-perturbative corrections", 
      "unfactorizable non-perturbative corrections", 
      "perturbative vacuum exchange", 
      "BFKL\u2013Regge expansion", 
      "rightmost hard BFKL pole dominance", 
      "hard BFKL pole dominance", 
      "BFKL pole dominance", 
      "virtual photon\u2013photon"
    ], 
    "name": "Predictions for high-energy real and virtual photon\u2013photon scattering from color dipole BFKL\u2013Regge factorization", 
    "pagination": "637-646", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1051069673"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s100520100804"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s100520100804", 
      "https://app.dimensions.ai/details/publication/pub.1051069673"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_356.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s100520100804"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s100520100804'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s100520100804'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s100520100804'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s100520100804'


 

This table displays all metadata directly associated to this object as RDF triples.

171 TRIPLES      21 PREDICATES      122 URIs      114 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s100520100804 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author N494582451f40458c983c443416a21d2d
4 schema:datePublished 2002-01
5 schema:datePublishedReg 2002-01-01
6 schema:description Abstract. High-energy virtual photon–virtual photon scattering can be viewed as an interaction of small size color dipoles from the beam and target photons, which makes \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\gamma^{*}\gamma^{*}, \gamma^{*}\gamma$\end{document} scattering at high energies (LEP, LEP200 and NLC) an indispensable probe of the short distance properties of the QCD pomeron exchange. Based on the color dipole representation, we investigate the consequences for the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\gamma^{*}\gamma^{*},\gamma^{*}\gamma$\end{document} scattering of the incorporation of asymptotic freedom into the BFKL equation which makes the QCD pomeron a series of isolated poles in the angular momentum plane. The emerging color dipole BFKL–Regge factorization allows us to relate in a model-independent way the contributions of each BFKL pole to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\gamma^{*}\gamma^{*},\gamma^{*} \gamma$\end{document} scattering and DIS off protons. Numerical predictions based on our early works on the color dipole BFKL phenomenology of DIS on protons are in good agreement with the experimental data on the photon structure function \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$F_{2\gamma}$\end{document} and the most recent data on the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\gamma^*\gamma^*$\end{document} cross section \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sigma^{\gamma^*\gamma^*}(Y)$\end{document} from the OPAL and L3 experiments at LEP200. We discuss the role of non-perturbative dynamics and predict a pronounced effect of the Regge-factorization breaking due to large unfactorizable non-perturbative corrections to the perturbative vacuum exchange. We comment on the salient features of the BFKL–Regge expansion for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\gamma^{*}\gamma^{*},\gamma^{*}\gamma$\end{document} scattering including the issue of the decoupling of subleading BFKL poles and the soft plus rightmost hard BFKL pole dominance.
7 schema:genre article
8 schema:inLanguage en
9 schema:isAccessibleForFree true
10 schema:isPartOf N8950dc4303604cb59dfa1484f1deb0e9
11 Nce9aadc83cd54c7e9505712cdd7e6b8f
12 sg:journal.1049394
13 schema:keywords BFKL equation
14 BFKL phenomenology
15 BFKL pole
16 BFKL pole dominance
17 BFKL–Regge expansion
18 BFKL–Regge factorization
19 DIS
20 High-energy virtual photon–virtual photon scattering
21 L3 experiment
22 LEP200
23 Pomeron
24 Pomeron exchange
25 QCD pomeron
26 QCD pomeron exchange
27 Regge-factorization breaking
28 agreement
29 angular momentum plane
30 asymptotic freedom
31 beam
32 breaking
33 color dipole BFKL phenomenology
34 color dipole BFKL–Regge factorization
35 color dipole representation
36 color dipoles
37 consequences
38 contribution
39 correction
40 cross sections
41 data
42 decoupling
43 dipole
44 dipole BFKL phenomenology
45 dipole BFKL–Regge factorization
46 dipole representation
47 distance properties
48 dominance
49 dynamics
50 earlier work
51 effect
52 energy
53 equations
54 exchange
55 expansion
56 experimental data
57 experiments
58 factorization
59 features
60 freedom
61 function
62 good agreement
63 hard BFKL pole dominance
64 high energy
65 incorporation
66 indispensable probe
67 interaction
68 issues
69 large unfactorizable non-perturbative corrections
70 model-independent way
71 momentum plane
72 non-perturbative corrections
73 non-perturbative dynamics
74 numerical predictions
75 opals
76 perturbative vacuum exchange
77 phenomenology
78 photon scattering
79 photon structure function
80 photon-photon
81 photons
82 photon–virtual photon scattering
83 plane
84 pole
85 pole dominance
86 prediction
87 probe
88 pronounced effect
89 properties
90 protons
91 recent data
92 representation
93 rightmost hard BFKL pole dominance
94 role
95 salient features
96 scattering
97 sections
98 series
99 short distance properties
100 size color dipoles
101 small size color dipoles
102 structure functions
103 unfactorizable non-perturbative corrections
104 vacuum exchange
105 virtual photon–photon
106 virtual photon–virtual photon scattering
107 way
108 work
109 schema:name Predictions for high-energy real and virtual photon–photon scattering from color dipole BFKL–Regge factorization
110 schema:pagination 637-646
111 schema:productId N049c153f083c488e8972dacd0a4fa749
112 N987cb0857634441983e4c2369d7bea09
113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051069673
114 https://doi.org/10.1007/s100520100804
115 schema:sdDatePublished 2021-12-01T19:14
116 schema:sdLicense https://scigraph.springernature.com/explorer/license/
117 schema:sdPublisher Nb4874b676b7b4d109e19adc79a971de9
118 schema:url https://doi.org/10.1007/s100520100804
119 sgo:license sg:explorer/license/
120 sgo:sdDataset articles
121 rdf:type schema:ScholarlyArticle
122 N049c153f083c488e8972dacd0a4fa749 schema:name doi
123 schema:value 10.1007/s100520100804
124 rdf:type schema:PropertyValue
125 N494582451f40458c983c443416a21d2d rdf:first sg:person.011254113621.16
126 rdf:rest Nfb20dc6f233d4ea1beb00a0f032ca70c
127 N8950dc4303604cb59dfa1484f1deb0e9 schema:volumeNumber 22
128 rdf:type schema:PublicationVolume
129 N89ae3e9bdcfa4193bdf8d77bae14d735 rdf:first sg:person.07653611431.49
130 rdf:rest rdf:nil
131 N987cb0857634441983e4c2369d7bea09 schema:name dimensions_id
132 schema:value pub.1051069673
133 rdf:type schema:PropertyValue
134 Nb4874b676b7b4d109e19adc79a971de9 schema:name Springer Nature - SN SciGraph project
135 rdf:type schema:Organization
136 Nce9aadc83cd54c7e9505712cdd7e6b8f schema:issueNumber 4
137 rdf:type schema:PublicationIssue
138 Nfb20dc6f233d4ea1beb00a0f032ca70c rdf:first sg:person.01267434315.18
139 rdf:rest N89ae3e9bdcfa4193bdf8d77bae14d735
140 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
141 schema:name Physical Sciences
142 rdf:type schema:DefinedTerm
143 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
144 schema:name Other Physical Sciences
145 rdf:type schema:DefinedTerm
146 sg:journal.1049394 schema:issn 1434-6044
147 1434-6052
148 schema:name European Physical Journal C
149 schema:publisher Springer Nature
150 rdf:type schema:Periodical
151 sg:person.011254113621.16 schema:affiliation grid-institutes:grid.8385.6
152 schema:familyName Nikolaev
153 schema:givenName N.N.
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011254113621.16
155 rdf:type schema:Person
156 sg:person.01267434315.18 schema:affiliation grid-institutes:grid.8385.6
157 schema:familyName Speth
158 schema:givenName J.
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01267434315.18
160 rdf:type schema:Person
161 sg:person.07653611431.49 schema:affiliation grid-institutes:grid.21626.31
162 schema:familyName Zoller
163 schema:givenName V.R.
164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07653611431.49
165 rdf:type schema:Person
166 grid-institutes:grid.21626.31 schema:alternateName Institute for Theoretical and Experimental Physics, Moscow 117218, Russia, RU
167 schema:name Institute for Theoretical and Experimental Physics, Moscow 117218, Russia, RU
168 rdf:type schema:Organization
169 grid-institutes:grid.8385.6 schema:alternateName Institut für Kernphysik, Forschungszentrum Jülich, 52425 Jülich, Germany, DE
170 schema:name Institut für Kernphysik, Forschungszentrum Jülich, 52425 Jülich, Germany, DE
171 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...