Deep-inelastic inclusive ep scattering at low x and a determination of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2001-06

AUTHORS

C. Adloff et al., The H1 Collaboration

ABSTRACT

A precise measurement of the inclusive deep-inelastic \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$e^+ p$\end{document} scattering cross section is reported in the kinematic range \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1.5 \le Q^2 \le 150$\end{document} GeV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$^2$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ 3 \cdot 10^{-5} \le x \le 0.2$\end{document}. The data were recorded with the H1 detector at HERA in 1996 and 1997, and correspond to an integrated luminosity of 20 pb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$^{-1}$\end{document}. The double differential cross section, from which the proton structure function \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}F_2(x,Q^2)\end{document} and the longitudinal structure function \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$F_L(x,Q^2)$\end{document} are extracted, is measured with typically 1% statistical and 3% systematic uncertainties. The measured derivative \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(\partial F_2(x,Q^2) / \partial \ln Q^2)_x $\end{document} is observed to rise continuously towards small x for fixed \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$Q^2$\end{document}. The cross section data are combined with published H1 measurements at high \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$Q^2$\end{document} for a next-to-leading order DGLAP QCD analysis. The H1 data determine the gluon momentum distribution in the range \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$3 \cdot 10^{-4} \le x \le 0.1$\end{document} to within an experimental accuracy of about 3% for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$Q^2 =20$\end{document} GeV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$^2$\end{document}. A fit of the H1 measurements and the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mu p $\end{document} data of the BCDMS collaboration allows the strong coupling constant \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha_s$\end{document} and the gluon distribution to be simultaneously determined. A value of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha_s (M_Z^2) =0.1150 \pm 0.0017 (exp)^{+0.0009}_{-0.0005} (model)$\end{document} is obtained in NLO, with an additional theoretical uncertainty of about \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\pm 0.005$\end{document}, mainly due to the uncertainty of the renormalisation scale. More... »

PAGES

33-61

Journal

TITLE

The European Physical Journal C

ISSUE

1

VOLUME

21

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s100520100720

DOI

http://dx.doi.org/10.1007/s100520100720

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1027380058


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Wuppertal", 
          "id": "https://www.grid.ac/institutes/grid.7787.f", 
          "name": [
            "Fachbereich Physik, Bergische Universit\u00e4t Gesamthochschule Wuppertal, Wuppertal, Germany, DE"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Adloff et al.", 
        "givenName": "C.", 
        "id": "sg:person.013447030207.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013447030207.46"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "The H1 Collaboration", 
        "type": "Person"
      }
    ], 
    "datePublished": "2001-06", 
    "datePublishedReg": "2001-06-01", 
    "description": "A precise measurement of the inclusive deep-inelastic \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$e^+ p$\\end{document} scattering cross section is reported in the kinematic range \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$1.5 \\le Q^2 \\le 150$\\end{document} GeV\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$^2$\\end{document} and \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$ 3 \\cdot 10^{-5} \\le x \\le 0.2$\\end{document}. The data were recorded with the H1 detector at HERA in 1996 and 1997, and correspond to an integrated luminosity of 20 pb\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$^{-1}$\\end{document}. The double differential cross section, from which the proton structure function \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}F_2(x,Q^2)\\end{document} and the longitudinal structure function \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$F_L(x,Q^2)$\\end{document} are extracted, is measured with typically 1% statistical and 3% systematic uncertainties. The measured derivative \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$(\\partial F_2(x,Q^2) / \\partial \\ln Q^2)_x $\\end{document} is observed to rise continuously towards small x for fixed \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$Q^2$\\end{document}. The cross section data are combined with published H1 measurements at high \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$Q^2$\\end{document} for a next-to-leading order DGLAP QCD analysis. The H1 data determine the gluon momentum distribution in the range \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$3 \\cdot 10^{-4} \\le x \\le 0.1$\\end{document} to within an experimental accuracy of about 3% for \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$Q^2 =20$\\end{document} GeV\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$^2$\\end{document}. A fit of the H1 measurements and the \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$\\mu p $\\end{document} data of the BCDMS collaboration allows the strong coupling constant \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$\\alpha_s$\\end{document} and the gluon distribution to be simultaneously determined. A value of \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$\\alpha_s (M_Z^2) =0.1150 \\pm 0.0017 (exp)^{+0.0009}_{-0.0005} (model)$\\end{document} is obtained in NLO, with an additional theoretical uncertainty of about \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$\\pm 0.005$\\end{document}, mainly due to the uncertainty of the renormalisation scale.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s100520100720", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1049394", 
        "issn": [
          "1434-6044", 
          "1434-6052"
        ], 
        "name": "The European Physical Journal C", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "21"
      }
    ], 
    "name": "Deep-inelastic inclusive ep scattering at low x and a determination of \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$\\alpha_s$\\end{document}", 
    "pagination": "33-61", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "826dea24c2114de0ced69de1ed9f26ac2b400f2ba3fa38a84270fa49753511dd"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s100520100720"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1027380058"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s100520100720", 
      "https://app.dimensions.ai/details/publication/pub.1027380058"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:26", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000488.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s100520100720"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s100520100720'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s100520100720'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s100520100720'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s100520100720'


 

This table displays all metadata directly associated to this object as RDF triples.

65 TRIPLES      20 PREDICATES      27 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s100520100720 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N2e424e5ae30548e38512cf2ce3d41663
4 schema:datePublished 2001-06
5 schema:datePublishedReg 2001-06-01
6 schema:description A precise measurement of the inclusive deep-inelastic \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$e^+ p$\end{document} scattering cross section is reported in the kinematic range \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1.5 \le Q^2 \le 150$\end{document} GeV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$^2$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ 3 \cdot 10^{-5} \le x \le 0.2$\end{document}. The data were recorded with the H1 detector at HERA in 1996 and 1997, and correspond to an integrated luminosity of 20 pb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$^{-1}$\end{document}. The double differential cross section, from which the proton structure function \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}F_2(x,Q^2)\end{document} and the longitudinal structure function \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$F_L(x,Q^2)$\end{document} are extracted, is measured with typically 1% statistical and 3% systematic uncertainties. The measured derivative \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(\partial F_2(x,Q^2) / \partial \ln Q^2)_x $\end{document} is observed to rise continuously towards small x for fixed \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$Q^2$\end{document}. The cross section data are combined with published H1 measurements at high \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$Q^2$\end{document} for a next-to-leading order DGLAP QCD analysis. The H1 data determine the gluon momentum distribution in the range \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$3 \cdot 10^{-4} \le x \le 0.1$\end{document} to within an experimental accuracy of about 3% for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$Q^2 =20$\end{document} GeV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$^2$\end{document}. A fit of the H1 measurements and the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mu p $\end{document} data of the BCDMS collaboration allows the strong coupling constant \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha_s$\end{document} and the gluon distribution to be simultaneously determined. A value of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha_s (M_Z^2) =0.1150 \pm 0.0017 (exp)^{+0.0009}_{-0.0005} (model)$\end{document} is obtained in NLO, with an additional theoretical uncertainty of about \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\pm 0.005$\end{document}, mainly due to the uncertainty of the renormalisation scale.
7 schema:genre research_article
8 schema:inLanguage en
9 schema:isAccessibleForFree true
10 schema:isPartOf N1df0c56743e14dfb8dbc0acad917e92c
11 Ne82d296c86e64f339c7d2081fb06c0bf
12 sg:journal.1049394
13 schema:name Deep-inelastic inclusive ep scattering at low x and a determination of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha_s$\end{document}
14 schema:pagination 33-61
15 schema:productId N0ca24544d9f04aeb9cd119ac546320b9
16 N49a71dec105244fc8dee8e379ef31252
17 N994e463ed8094ce7ba627fbd2fe8525c
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027380058
19 https://doi.org/10.1007/s100520100720
20 schema:sdDatePublished 2019-04-10T22:26
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher N8702c3f797424fd393b28deec14c919f
23 schema:url http://link.springer.com/10.1007/s100520100720
24 sgo:license sg:explorer/license/
25 sgo:sdDataset articles
26 rdf:type schema:ScholarlyArticle
27 N0ca24544d9f04aeb9cd119ac546320b9 schema:name readcube_id
28 schema:value 826dea24c2114de0ced69de1ed9f26ac2b400f2ba3fa38a84270fa49753511dd
29 rdf:type schema:PropertyValue
30 N1df0c56743e14dfb8dbc0acad917e92c schema:volumeNumber 21
31 rdf:type schema:PublicationVolume
32 N2e424e5ae30548e38512cf2ce3d41663 rdf:first sg:person.013447030207.46
33 rdf:rest Na36d20d773cf4c18a96bc7f81c6c75e1
34 N49a71dec105244fc8dee8e379ef31252 schema:name dimensions_id
35 schema:value pub.1027380058
36 rdf:type schema:PropertyValue
37 N707d14babfa14419bd1f4154f3bb2df7 schema:familyName The H1 Collaboration
38 rdf:type schema:Person
39 N8702c3f797424fd393b28deec14c919f schema:name Springer Nature - SN SciGraph project
40 rdf:type schema:Organization
41 N994e463ed8094ce7ba627fbd2fe8525c schema:name doi
42 schema:value 10.1007/s100520100720
43 rdf:type schema:PropertyValue
44 Na36d20d773cf4c18a96bc7f81c6c75e1 rdf:first N707d14babfa14419bd1f4154f3bb2df7
45 rdf:rest rdf:nil
46 Ne82d296c86e64f339c7d2081fb06c0bf schema:issueNumber 1
47 rdf:type schema:PublicationIssue
48 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
49 schema:name Mathematical Sciences
50 rdf:type schema:DefinedTerm
51 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
52 schema:name Statistics
53 rdf:type schema:DefinedTerm
54 sg:journal.1049394 schema:issn 1434-6044
55 1434-6052
56 schema:name The European Physical Journal C
57 rdf:type schema:Periodical
58 sg:person.013447030207.46 schema:affiliation https://www.grid.ac/institutes/grid.7787.f
59 schema:familyName Adloff et al.
60 schema:givenName C.
61 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013447030207.46
62 rdf:type schema:Person
63 https://www.grid.ac/institutes/grid.7787.f schema:alternateName University of Wuppertal
64 schema:name Fachbereich Physik, Bergische Universität Gesamthochschule Wuppertal, Wuppertal, Germany, DE
65 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...