Asymptotic structure of perturbative series for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tau$\end{document} lepton decay observables: \documentclass[12pt]{minimal} ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2000-05

AUTHORS

J.G. Körner, F. Krajewski, A.A. Pivovarov

ABSTRACT

In a previous paper [1] we performed an analysis of the asymptotic structure of the perturbation theory series for semileptonic \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tau$\end{document} lepton decays in the massless limit. We extend our analysis to the Cabibbo suppressed \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Delta S=1$\end{document} decay modes of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tau$\end{document} lepton. In particular we address the problem of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$m_s^2$\end{document} corrections to the theoretical formulas. The properties of the asymptotic behavior of the finite order perturbation theory series for the coefficient functions of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$m_s^2$\end{document} corrections are studied. More... »

PAGES

123-132

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s100520000341

DOI

http://dx.doi.org/10.1007/s100520000341

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1008304917


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Johannes Gutenberg University of Mainz", 
          "id": "https://www.grid.ac/institutes/grid.5802.f", 
          "name": [
            "Institut f\u00fcr Physik, Johannes-Gutenberg-Universit\u00e4t, Staudinger Weg 7, 55099 Mainz, Germany, DE"
          ], 
          "type": "Organization"
        }, 
        "familyName": "K\u00f6rner", 
        "givenName": "J.G.", 
        "id": "sg:person.01301453175.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301453175.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Johannes Gutenberg University of Mainz", 
          "id": "https://www.grid.ac/institutes/grid.5802.f", 
          "name": [
            "Institut f\u00fcr Physik, Johannes-Gutenberg-Universit\u00e4t, Staudinger Weg 7, 55099 Mainz, Germany, DE"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Krajewski", 
        "givenName": "F.", 
        "id": "sg:person.012040124652.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012040124652.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Johannes Gutenberg University of Mainz", 
          "id": "https://www.grid.ac/institutes/grid.5802.f", 
          "name": [
            "Institut f\u00fcr Physik, Johannes-Gutenberg-Universit\u00e4t, Staudinger Weg 7, 55099 Mainz, Germany, DE"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pivovarov", 
        "givenName": "A.A.", 
        "id": "sg:person.014624660601.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014624660601.63"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2000-05", 
    "datePublishedReg": "2000-05-01", 
    "description": "In a previous paper [1] we performed an analysis of the asymptotic structure of the perturbation theory series for semileptonic \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$\\tau$\\end{document} lepton decays in the massless limit. We extend our analysis to the Cabibbo suppressed \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$\\Delta S=1$\\end{document} decay modes of the \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$\\tau$\\end{document} lepton. In particular we address the problem of \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$m_s^2$\\end{document} corrections to the theoretical formulas. The properties of the asymptotic behavior of the finite order perturbation theory series for the coefficient functions of the \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$m_s^2$\\end{document} corrections are studied.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s100520000341", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1049394", 
        "issn": [
          "1434-6044", 
          "1434-6052"
        ], 
        "name": "The European Physical Journal C", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "14"
      }
    ], 
    "name": "Asymptotic structure of perturbative series for \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$\\tau$\\end{document} lepton decay observables: \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$m_s^2$\\end{document} corrections", 
    "pagination": "123-132", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "279088f5444bf032c2ce5cfa09d5541d6d5eb3a01940dc252760216a29100dc1"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s100520000341"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1008304917"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s100520000341", 
      "https://app.dimensions.ai/details/publication/pub.1008304917"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:50", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000480.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s100520000341"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s100520000341'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s100520000341'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s100520000341'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s100520000341'


 

This table displays all metadata directly associated to this object as RDF triples.

75 TRIPLES      20 PREDICATES      27 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s100520000341 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nd1e06c4bd5f44bd09eff22f487de6145
4 schema:datePublished 2000-05
5 schema:datePublishedReg 2000-05-01
6 schema:description In a previous paper [1] we performed an analysis of the asymptotic structure of the perturbation theory series for semileptonic \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tau$\end{document} lepton decays in the massless limit. We extend our analysis to the Cabibbo suppressed \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Delta S=1$\end{document} decay modes of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tau$\end{document} lepton. In particular we address the problem of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$m_s^2$\end{document} corrections to the theoretical formulas. The properties of the asymptotic behavior of the finite order perturbation theory series for the coefficient functions of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$m_s^2$\end{document} corrections are studied.
7 schema:genre research_article
8 schema:inLanguage en
9 schema:isAccessibleForFree true
10 schema:isPartOf N0255813449b34c8a8be0c61eae426f0e
11 N67f3a76ab34049c4895f1561348da806
12 sg:journal.1049394
13 schema:name Asymptotic structure of perturbative series for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tau$\end{document} lepton decay observables: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$m_s^2$\end{document} corrections
14 schema:pagination 123-132
15 schema:productId N52fd9e19f5174be0a74c0ae44cca66b1
16 N8e72f734faef4565adcb6225d0b913db
17 Neaf677dabac442e5b8b818c74cf67a30
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008304917
19 https://doi.org/10.1007/s100520000341
20 schema:sdDatePublished 2019-04-10T19:50
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher N87797ecfd0af40749ce2ef5c66f0ba8c
23 schema:url http://link.springer.com/10.1007/s100520000341
24 sgo:license sg:explorer/license/
25 sgo:sdDataset articles
26 rdf:type schema:ScholarlyArticle
27 N0255813449b34c8a8be0c61eae426f0e schema:issueNumber 1
28 rdf:type schema:PublicationIssue
29 N058d6988efc5451ab3bcf68a9de9bb54 rdf:first sg:person.014624660601.63
30 rdf:rest rdf:nil
31 N52fd9e19f5174be0a74c0ae44cca66b1 schema:name readcube_id
32 schema:value 279088f5444bf032c2ce5cfa09d5541d6d5eb3a01940dc252760216a29100dc1
33 rdf:type schema:PropertyValue
34 N67f3a76ab34049c4895f1561348da806 schema:volumeNumber 14
35 rdf:type schema:PublicationVolume
36 N87797ecfd0af40749ce2ef5c66f0ba8c schema:name Springer Nature - SN SciGraph project
37 rdf:type schema:Organization
38 N8e72f734faef4565adcb6225d0b913db schema:name dimensions_id
39 schema:value pub.1008304917
40 rdf:type schema:PropertyValue
41 Nb87779a5bd414053b69e357e134f8fe2 rdf:first sg:person.012040124652.07
42 rdf:rest N058d6988efc5451ab3bcf68a9de9bb54
43 Nd1e06c4bd5f44bd09eff22f487de6145 rdf:first sg:person.01301453175.98
44 rdf:rest Nb87779a5bd414053b69e357e134f8fe2
45 Neaf677dabac442e5b8b818c74cf67a30 schema:name doi
46 schema:value 10.1007/s100520000341
47 rdf:type schema:PropertyValue
48 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
49 schema:name Mathematical Sciences
50 rdf:type schema:DefinedTerm
51 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
52 schema:name Pure Mathematics
53 rdf:type schema:DefinedTerm
54 sg:journal.1049394 schema:issn 1434-6044
55 1434-6052
56 schema:name The European Physical Journal C
57 rdf:type schema:Periodical
58 sg:person.012040124652.07 schema:affiliation https://www.grid.ac/institutes/grid.5802.f
59 schema:familyName Krajewski
60 schema:givenName F.
61 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012040124652.07
62 rdf:type schema:Person
63 sg:person.01301453175.98 schema:affiliation https://www.grid.ac/institutes/grid.5802.f
64 schema:familyName Körner
65 schema:givenName J.G.
66 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301453175.98
67 rdf:type schema:Person
68 sg:person.014624660601.63 schema:affiliation https://www.grid.ac/institutes/grid.5802.f
69 schema:familyName Pivovarov
70 schema:givenName A.A.
71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014624660601.63
72 rdf:type schema:Person
73 https://www.grid.ac/institutes/grid.5802.f schema:alternateName Johannes Gutenberg University of Mainz
74 schema:name Institut für Physik, Johannes-Gutenberg-Universität, Staudinger Weg 7, 55099 Mainz, Germany, DE
75 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...