Ontology type: schema:ScholarlyArticle
2000-09
AUTHORST. Striffler, U. Stuhr, H. Wipf, H. Hahn, S. Egelhaaf
ABSTRACT: By means of small-angle neutron scattering the microstructure of two nanocrystalline Pd samples (prepared by inert gas condensation) has been studied at room temperature in a Q-range from [0pt] \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} to [0pt] \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}. An additional subsequent doping of the two samples with H as well as with D (concentrations < 4 at%) caused contrast variations that provided more detailed structural information. The measured scattering intensity was modeled by a Porod contribution from large heterogenities (e.g. pores) and a contribution from spherical grains with a log-normal distribution of their radii. To account for the presence of grain boundaries, the grains were considered to be surrounded by a shell with a reduced Pd density and a thickness half as large as the thickness of the grain boundaries. For the above model, the data of the H-doped, D-doped and undoped sample were simultaneously fitted with one single set of adjustable parameters. The fits yielded for the two samples volume-weighted mean grain radii of 10 nm and 13 nm. The values for the grain boundary thickness lie between 0.2 and 0.8 nm. Almost all of the H- and D-atoms are, at low hydrogen concentrations, located in the grain boundaries. More... »
PAGES245-251
http://scigraph.springernature.com/pub.10.1007/s100510070138
DOIhttp://dx.doi.org/10.1007/s100510070138
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1052100640
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Institut f\u00fcr Festk\u00f6rperphysik, Technische Universit\u00e4t Darmstadt, Hochschulstra\u00dfe 6, 64289 Darmstadt, Germany, DE",
"id": "http://www.grid.ac/institutes/grid.6546.1",
"name": [
"Institut f\u00fcr Festk\u00f6rperphysik, Technische Universit\u00e4t Darmstadt, Hochschulstra\u00dfe 6, 64289 Darmstadt, Germany, DE"
],
"type": "Organization"
},
"familyName": "Striffler",
"givenName": "T.",
"id": "sg:person.010305214143.90",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010305214143.90"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Paul Scherrer Institut, 5232 Villigen PSI, Switzerland,, CH",
"id": "http://www.grid.ac/institutes/grid.5991.4",
"name": [
"Paul Scherrer Institut, 5232 Villigen PSI, Switzerland,, CH"
],
"type": "Organization"
},
"familyName": "Stuhr",
"givenName": "U.",
"id": "sg:person.014120174273.70",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014120174273.70"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institut f\u00fcr Festk\u00f6rperphysik, Technische Universit\u00e4t Darmstadt, Hochschulstra\u00dfe 6, 64289 Darmstadt, Germany, DE",
"id": "http://www.grid.ac/institutes/grid.6546.1",
"name": [
"Institut f\u00fcr Festk\u00f6rperphysik, Technische Universit\u00e4t Darmstadt, Hochschulstra\u00dfe 6, 64289 Darmstadt, Germany, DE"
],
"type": "Organization"
},
"familyName": "Wipf",
"givenName": "H.",
"id": "sg:person.07553115345.63",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07553115345.63"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Materialwissenschaft, Technische Universit\u00e4t Darmstadt, Petersenstra\u00dfe 23, 64287 Darmstadt, Germany, DE",
"id": "http://www.grid.ac/institutes/grid.6546.1",
"name": [
"Materialwissenschaft, Technische Universit\u00e4t Darmstadt, Petersenstra\u00dfe 23, 64287 Darmstadt, Germany, DE"
],
"type": "Organization"
},
"familyName": "Hahn",
"givenName": "H.",
"id": "sg:person.01041366665.89",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041366665.89"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institut Laue Langevin, 6 rue Jules Horowitz, BP 156, 38042 Grenoble Cedex 9, France, FR",
"id": "http://www.grid.ac/institutes/grid.156520.5",
"name": [
"Institut Laue Langevin, 6 rue Jules Horowitz, BP 156, 38042 Grenoble Cedex 9, France, FR"
],
"type": "Organization"
},
"familyName": "Egelhaaf",
"givenName": "S.",
"id": "sg:person.01022755252.25",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01022755252.25"
],
"type": "Person"
}
],
"datePublished": "2000-09",
"datePublishedReg": "2000-09-01",
"description": "Abstract: By means of small-angle neutron scattering the microstructure of two nanocrystalline Pd samples (prepared by inert gas condensation) has been studied at room temperature in a Q-range from [0pt] \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\\end{document} to [0pt] \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\\end{document}. An additional subsequent doping of the two samples with H as well as with D (concentrations < 4 at%) caused contrast variations that provided more detailed structural information. The measured scattering intensity was modeled by a Porod contribution from large heterogenities (e.g. pores) and a contribution from spherical grains with a log-normal distribution of their radii. To account for the presence of grain boundaries, the grains were considered to be surrounded by a shell with a reduced Pd density and a thickness half as large as the thickness of the grain boundaries. For the above model, the data of the H-doped, D-doped and undoped sample were simultaneously fitted with one single set of adjustable parameters. The fits yielded for the two samples volume-weighted mean grain radii of 10 nm and 13 nm. The values for the grain boundary thickness lie between 0.2 and 0.8 nm. Almost all of the H- and D-atoms are, at low hydrogen concentrations, located in the grain boundaries.",
"genre": "article",
"id": "sg:pub.10.1007/s100510070138",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1129956",
"issn": [
"1155-4304",
"1286-4862"
],
"name": "The European Physical Journal B",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "2",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "17"
}
],
"keywords": [
"grain boundaries",
"grain boundary thickness",
"low hydrogen concentration",
"mean grain radius",
"boundary thickness",
"spherical grains",
"hydrogen concentration",
"nanocrystalline palladium",
"undoped sample",
"microstructure of hydrogen",
"microstructure",
"subsequent doping",
"room temperature",
"grain radius",
"thickness",
"adjustable parameters",
"above model",
"grains",
"boundaries",
"nanocrystalline",
"log-normal distribution",
"doping",
"radius",
"single set",
"temperature",
"hydrogen",
"shell",
"density",
"parameters",
"small-angle neutron scattering",
"range",
"palladium",
"samples",
"contrast variation",
"distribution",
"model",
"neutrons",
"variation",
"neutron scattering",
"contribution",
"values",
"means",
"intensity",
"concentration",
"scattering",
"structural information",
"small-angle neutron",
"detailed structural information",
"set",
"fit",
"atoms",
"presence",
"data",
"information",
"heterogenity",
"half"
],
"name": "The microstructure of hydrogen- and deuterium-doped nanocrystalline palladium studied by small-angle neutron scattering",
"pagination": "245-251",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1052100640"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s100510070138"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s100510070138",
"https://app.dimensions.ai/details/publication/pub.1052100640"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:21",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_328.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s100510070138"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s100510070138'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s100510070138'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s100510070138'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s100510070138'
This table displays all metadata directly associated to this object as RDF triples.
150 TRIPLES
21 PREDICATES
82 URIs
74 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s100510070138 | schema:about | anzsrc-for:01 |
2 | ″ | ″ | anzsrc-for:02 |
3 | ″ | schema:author | Ne9a5cf370ba84f258debe7a9636996d4 |
4 | ″ | schema:datePublished | 2000-09 |
5 | ″ | schema:datePublishedReg | 2000-09-01 |
6 | ″ | schema:description | Abstract: By means of small-angle neutron scattering the microstructure of two nanocrystalline Pd samples (prepared by inert gas condensation) has been studied at room temperature in a Q-range from [0pt] \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} to [0pt] \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}. An additional subsequent doping of the two samples with H as well as with D (concentrations < 4 at%) caused contrast variations that provided more detailed structural information. The measured scattering intensity was modeled by a Porod contribution from large heterogenities (e.g. pores) and a contribution from spherical grains with a log-normal distribution of their radii. To account for the presence of grain boundaries, the grains were considered to be surrounded by a shell with a reduced Pd density and a thickness half as large as the thickness of the grain boundaries. For the above model, the data of the H-doped, D-doped and undoped sample were simultaneously fitted with one single set of adjustable parameters. The fits yielded for the two samples volume-weighted mean grain radii of 10 nm and 13 nm. The values for the grain boundary thickness lie between 0.2 and 0.8 nm. Almost all of the H- and D-atoms are, at low hydrogen concentrations, located in the grain boundaries. |
7 | ″ | schema:genre | article |
8 | ″ | schema:inLanguage | en |
9 | ″ | schema:isAccessibleForFree | false |
10 | ″ | schema:isPartOf | N6e547cf541514ba2a3b17d49857f21ea |
11 | ″ | ″ | Nde13b3b24d264c84a6c0513c09835afa |
12 | ″ | ″ | sg:journal.1129956 |
13 | ″ | schema:keywords | above model |
14 | ″ | ″ | adjustable parameters |
15 | ″ | ″ | atoms |
16 | ″ | ″ | boundaries |
17 | ″ | ″ | boundary thickness |
18 | ″ | ″ | concentration |
19 | ″ | ″ | contrast variation |
20 | ″ | ″ | contribution |
21 | ″ | ″ | data |
22 | ″ | ″ | density |
23 | ″ | ″ | detailed structural information |
24 | ″ | ″ | distribution |
25 | ″ | ″ | doping |
26 | ″ | ″ | fit |
27 | ″ | ″ | grain boundaries |
28 | ″ | ″ | grain boundary thickness |
29 | ″ | ″ | grain radius |
30 | ″ | ″ | grains |
31 | ″ | ″ | half |
32 | ″ | ″ | heterogenity |
33 | ″ | ″ | hydrogen |
34 | ″ | ″ | hydrogen concentration |
35 | ″ | ″ | information |
36 | ″ | ″ | intensity |
37 | ″ | ″ | log-normal distribution |
38 | ″ | ″ | low hydrogen concentration |
39 | ″ | ″ | mean grain radius |
40 | ″ | ″ | means |
41 | ″ | ″ | microstructure |
42 | ″ | ″ | microstructure of hydrogen |
43 | ″ | ″ | model |
44 | ″ | ″ | nanocrystalline |
45 | ″ | ″ | nanocrystalline palladium |
46 | ″ | ″ | neutron scattering |
47 | ″ | ″ | neutrons |
48 | ″ | ″ | palladium |
49 | ″ | ″ | parameters |
50 | ″ | ″ | presence |
51 | ″ | ″ | radius |
52 | ″ | ″ | range |
53 | ″ | ″ | room temperature |
54 | ″ | ″ | samples |
55 | ″ | ″ | scattering |
56 | ″ | ″ | set |
57 | ″ | ″ | shell |
58 | ″ | ″ | single set |
59 | ″ | ″ | small-angle neutron |
60 | ″ | ″ | small-angle neutron scattering |
61 | ″ | ″ | spherical grains |
62 | ″ | ″ | structural information |
63 | ″ | ″ | subsequent doping |
64 | ″ | ″ | temperature |
65 | ″ | ″ | thickness |
66 | ″ | ″ | undoped sample |
67 | ″ | ″ | values |
68 | ″ | ″ | variation |
69 | ″ | schema:name | The microstructure of hydrogen- and deuterium-doped nanocrystalline palladium studied by small-angle neutron scattering |
70 | ″ | schema:pagination | 245-251 |
71 | ″ | schema:productId | N0dce090148fd48d487481f57073f405b |
72 | ″ | ″ | N4cba45c67ca04d50a2f5050460b52940 |
73 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1052100640 |
74 | ″ | ″ | https://doi.org/10.1007/s100510070138 |
75 | ″ | schema:sdDatePublished | 2022-05-20T07:21 |
76 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
77 | ″ | schema:sdPublisher | N6137e4797b2e4928ad53adba77bbb992 |
78 | ″ | schema:url | https://doi.org/10.1007/s100510070138 |
79 | ″ | sgo:license | sg:explorer/license/ |
80 | ″ | sgo:sdDataset | articles |
81 | ″ | rdf:type | schema:ScholarlyArticle |
82 | N0dce090148fd48d487481f57073f405b | schema:name | doi |
83 | ″ | schema:value | 10.1007/s100510070138 |
84 | ″ | rdf:type | schema:PropertyValue |
85 | N4cba45c67ca04d50a2f5050460b52940 | schema:name | dimensions_id |
86 | ″ | schema:value | pub.1052100640 |
87 | ″ | rdf:type | schema:PropertyValue |
88 | N56fb32a370864581ad6b7cdbdc48f51f | rdf:first | sg:person.01022755252.25 |
89 | ″ | rdf:rest | rdf:nil |
90 | N6137e4797b2e4928ad53adba77bbb992 | schema:name | Springer Nature - SN SciGraph project |
91 | ″ | rdf:type | schema:Organization |
92 | N6e547cf541514ba2a3b17d49857f21ea | schema:issueNumber | 2 |
93 | ″ | rdf:type | schema:PublicationIssue |
94 | N9ee27b037e8a4641b174c54c8e3fcccc | rdf:first | sg:person.014120174273.70 |
95 | ″ | rdf:rest | Ncb9cc66632e5488882172211d697e92f |
96 | Na7c9c460c6a64bf29c5385bf8a75650e | rdf:first | sg:person.01041366665.89 |
97 | ″ | rdf:rest | N56fb32a370864581ad6b7cdbdc48f51f |
98 | Ncb9cc66632e5488882172211d697e92f | rdf:first | sg:person.07553115345.63 |
99 | ″ | rdf:rest | Na7c9c460c6a64bf29c5385bf8a75650e |
100 | Nde13b3b24d264c84a6c0513c09835afa | schema:volumeNumber | 17 |
101 | ″ | rdf:type | schema:PublicationVolume |
102 | Ne9a5cf370ba84f258debe7a9636996d4 | rdf:first | sg:person.010305214143.90 |
103 | ″ | rdf:rest | N9ee27b037e8a4641b174c54c8e3fcccc |
104 | anzsrc-for:01 | schema:inDefinedTermSet | anzsrc-for: |
105 | ″ | schema:name | Mathematical Sciences |
106 | ″ | rdf:type | schema:DefinedTerm |
107 | anzsrc-for:02 | schema:inDefinedTermSet | anzsrc-for: |
108 | ″ | schema:name | Physical Sciences |
109 | ″ | rdf:type | schema:DefinedTerm |
110 | sg:journal.1129956 | schema:issn | 1155-4304 |
111 | ″ | ″ | 1286-4862 |
112 | ″ | schema:name | The European Physical Journal B |
113 | ″ | schema:publisher | Springer Nature |
114 | ″ | rdf:type | schema:Periodical |
115 | sg:person.01022755252.25 | schema:affiliation | grid-institutes:grid.156520.5 |
116 | ″ | schema:familyName | Egelhaaf |
117 | ″ | schema:givenName | S. |
118 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01022755252.25 |
119 | ″ | rdf:type | schema:Person |
120 | sg:person.010305214143.90 | schema:affiliation | grid-institutes:grid.6546.1 |
121 | ″ | schema:familyName | Striffler |
122 | ″ | schema:givenName | T. |
123 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010305214143.90 |
124 | ″ | rdf:type | schema:Person |
125 | sg:person.01041366665.89 | schema:affiliation | grid-institutes:grid.6546.1 |
126 | ″ | schema:familyName | Hahn |
127 | ″ | schema:givenName | H. |
128 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041366665.89 |
129 | ″ | rdf:type | schema:Person |
130 | sg:person.014120174273.70 | schema:affiliation | grid-institutes:grid.5991.4 |
131 | ″ | schema:familyName | Stuhr |
132 | ″ | schema:givenName | U. |
133 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014120174273.70 |
134 | ″ | rdf:type | schema:Person |
135 | sg:person.07553115345.63 | schema:affiliation | grid-institutes:grid.6546.1 |
136 | ″ | schema:familyName | Wipf |
137 | ″ | schema:givenName | H. |
138 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07553115345.63 |
139 | ″ | rdf:type | schema:Person |
140 | grid-institutes:grid.156520.5 | schema:alternateName | Institut Laue Langevin, 6 rue Jules Horowitz, BP 156, 38042 Grenoble Cedex 9, France, FR |
141 | ″ | schema:name | Institut Laue Langevin, 6 rue Jules Horowitz, BP 156, 38042 Grenoble Cedex 9, France, FR |
142 | ″ | rdf:type | schema:Organization |
143 | grid-institutes:grid.5991.4 | schema:alternateName | Paul Scherrer Institut, 5232 Villigen PSI, Switzerland,, CH |
144 | ″ | schema:name | Paul Scherrer Institut, 5232 Villigen PSI, Switzerland,, CH |
145 | ″ | rdf:type | schema:Organization |
146 | grid-institutes:grid.6546.1 | schema:alternateName | Institut für Festkörperphysik, Technische Universität Darmstadt, Hochschulstraße 6, 64289 Darmstadt, Germany, DE |
147 | ″ | ″ | Materialwissenschaft, Technische Universität Darmstadt, Petersenstraße 23, 64287 Darmstadt, Germany, DE |
148 | ″ | schema:name | Institut für Festkörperphysik, Technische Universität Darmstadt, Hochschulstraße 6, 64289 Darmstadt, Germany, DE |
149 | ″ | ″ | Materialwissenschaft, Technische Universität Darmstadt, Petersenstraße 23, 64287 Darmstadt, Germany, DE |
150 | ″ | rdf:type | schema:Organization |