Simple stochastic models showing strong anomalous diffusion View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2000-12

AUTHORS

K.H. Andersen, P. Castiglione, A. Mazzino, A. Vulpiani

ABSTRACT

We show that strong anomalous diffusion, i.e.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} is a nonlinear function of q, is a generic phenomenon within a class of generalized continuous-time random walks. For such class of systems it is possible to compute analytically \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} where n is an integer number. The presence of strong anomalous diffusion implies that the data collapse of the probability density function \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} cannot hold, a part (sometimes) in the limit of very small \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}, now \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}. Moreover the comparison with previous numerical results shows that the shape of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} is not universal, i.e., one can have systems with the same \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} but different F. More... »

PAGES

447-452

Journal

TITLE

The European Physical Journal B

ISSUE

3

VOLUME

18

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s100510070032

DOI

http://dx.doi.org/10.1007/s100510070032

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1020694755


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Dipartimento di Fisica, and INFM, Universit\u00e0\u201cLa Sapienza\u201d, P.le A. Moro 2, 00185 Roma, Italy, IT"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Andersen", 
        "givenName": "K.H.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Dipartimento di Fisica, and INFM, Universit\u00e0\u201cLa Sapienza\u201d, P.le A. Moro 2, 00185 Roma, Italy, IT"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Castiglione", 
        "givenName": "P.", 
        "id": "sg:person.0707276245.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0707276245.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Genoa", 
          "id": "https://www.grid.ac/institutes/grid.5606.5", 
          "name": [
            "INFM-Dipartimento di Fisica, Universit\u00e0 di Genova, 16146 Genova, Italy, IT"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mazzino", 
        "givenName": "A.", 
        "id": "sg:person.01333311426.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333311426.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Dipartimento di Fisica, and INFM, Universit\u00e0\u201cLa Sapienza\u201d, P.le A. Moro 2, 00185 Roma, Italy, IT"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vulpiani", 
        "givenName": "A.", 
        "id": "sg:person.01352261626.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01352261626.07"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2000-12", 
    "datePublishedReg": "2000-12-01", 
    "description": "We show that strong anomalous diffusion, i.e.\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}\\end{document} where \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}\\end{document} is a nonlinear function of q, is a generic phenomenon within a class of generalized continuous-time random walks. For such class of systems it is possible to compute analytically \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}\\end{document} where n is an integer number. The presence of strong anomalous diffusion implies that the data collapse of the probability density function \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}\\end{document} cannot hold, a part (sometimes) in the limit of very small \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}\\end{document}, now \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}\\end{document}. Moreover the comparison with previous numerical results shows that the shape of \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}\\end{document} is not universal, i.e., one can have systems with the same \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}\\end{document} but different F.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s100510070032", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1129956", 
        "issn": [
          "1155-4304", 
          "1286-4862"
        ], 
        "name": "The European Physical Journal B", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "18"
      }
    ], 
    "name": "Simple stochastic models showing strong anomalous diffusion", 
    "pagination": "447-452", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "629aeaa553c7edb3f3d15c043a85a9b70a0557c48934e84c10e5f0b8e4fb7619"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s100510070032"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1020694755"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s100510070032", 
      "https://app.dimensions.ai/details/publication/pub.1020694755"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000488.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s100510070032"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s100510070032'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s100510070032'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s100510070032'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s100510070032'


 

This table displays all metadata directly associated to this object as RDF triples.

87 TRIPLES      20 PREDICATES      27 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s100510070032 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N4f4741f9a0ab4b1685624788aea581a0
4 schema:datePublished 2000-12
5 schema:datePublishedReg 2000-12-01
6 schema:description We show that strong anomalous diffusion, i.e.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} is a nonlinear function of q, is a generic phenomenon within a class of generalized continuous-time random walks. For such class of systems it is possible to compute analytically \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} where n is an integer number. The presence of strong anomalous diffusion implies that the data collapse of the probability density function \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} cannot hold, a part (sometimes) in the limit of very small \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}, now \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}. Moreover the comparison with previous numerical results shows that the shape of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} is not universal, i.e., one can have systems with the same \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} but different F.
7 schema:genre research_article
8 schema:inLanguage en
9 schema:isAccessibleForFree true
10 schema:isPartOf Nd1995a1a03d243d595208135c6a2f138
11 Ne5d0c15e48084e67b428bfb637ff3c96
12 sg:journal.1129956
13 schema:name Simple stochastic models showing strong anomalous diffusion
14 schema:pagination 447-452
15 schema:productId N0594e6ac18004faaa86c1b28ef10c91c
16 N110d3651c95f47a3a450bf5e5f32d6fa
17 Nd1b2a1b016b9497c97a59b0d59f1a91d
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020694755
19 https://doi.org/10.1007/s100510070032
20 schema:sdDatePublished 2019-04-10T19:03
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher N93adf997da0a4b41854585c16a58fd17
23 schema:url http://link.springer.com/10.1007/s100510070032
24 sgo:license sg:explorer/license/
25 sgo:sdDataset articles
26 rdf:type schema:ScholarlyArticle
27 N0594e6ac18004faaa86c1b28ef10c91c schema:name dimensions_id
28 schema:value pub.1020694755
29 rdf:type schema:PropertyValue
30 N110d3651c95f47a3a450bf5e5f32d6fa schema:name doi
31 schema:value 10.1007/s100510070032
32 rdf:type schema:PropertyValue
33 N1292f53c00e2490c989abdc63177a342 schema:name Dipartimento di Fisica, and INFM, Università“La Sapienza”, P.le A. Moro 2, 00185 Roma, Italy, IT
34 rdf:type schema:Organization
35 N499953d065c14687a7571666deb15920 schema:name Dipartimento di Fisica, and INFM, Università“La Sapienza”, P.le A. Moro 2, 00185 Roma, Italy, IT
36 rdf:type schema:Organization
37 N4f4741f9a0ab4b1685624788aea581a0 rdf:first N928bd176b54f447ea2daf6a865259fcf
38 rdf:rest Ncb2b988c931347b987ae6454970eca8b
39 N928bd176b54f447ea2daf6a865259fcf schema:affiliation N499953d065c14687a7571666deb15920
40 schema:familyName Andersen
41 schema:givenName K.H.
42 rdf:type schema:Person
43 N93adf997da0a4b41854585c16a58fd17 schema:name Springer Nature - SN SciGraph project
44 rdf:type schema:Organization
45 Nba9f80a1807242f89fe86a501cec234a rdf:first sg:person.01352261626.07
46 rdf:rest rdf:nil
47 Nbc11d9da72bb41eeada16862e61247e6 schema:name Dipartimento di Fisica, and INFM, Università“La Sapienza”, P.le A. Moro 2, 00185 Roma, Italy, IT
48 rdf:type schema:Organization
49 Ncb2b988c931347b987ae6454970eca8b rdf:first sg:person.0707276245.73
50 rdf:rest Ne716fb7c5937406dbc138df1cb696c13
51 Nd1995a1a03d243d595208135c6a2f138 schema:issueNumber 3
52 rdf:type schema:PublicationIssue
53 Nd1b2a1b016b9497c97a59b0d59f1a91d schema:name readcube_id
54 schema:value 629aeaa553c7edb3f3d15c043a85a9b70a0557c48934e84c10e5f0b8e4fb7619
55 rdf:type schema:PropertyValue
56 Ne5d0c15e48084e67b428bfb637ff3c96 schema:volumeNumber 18
57 rdf:type schema:PublicationVolume
58 Ne716fb7c5937406dbc138df1cb696c13 rdf:first sg:person.01333311426.27
59 rdf:rest Nba9f80a1807242f89fe86a501cec234a
60 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
61 schema:name Mathematical Sciences
62 rdf:type schema:DefinedTerm
63 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
64 schema:name Statistics
65 rdf:type schema:DefinedTerm
66 sg:journal.1129956 schema:issn 1155-4304
67 1286-4862
68 schema:name The European Physical Journal B
69 rdf:type schema:Periodical
70 sg:person.01333311426.27 schema:affiliation https://www.grid.ac/institutes/grid.5606.5
71 schema:familyName Mazzino
72 schema:givenName A.
73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333311426.27
74 rdf:type schema:Person
75 sg:person.01352261626.07 schema:affiliation N1292f53c00e2490c989abdc63177a342
76 schema:familyName Vulpiani
77 schema:givenName A.
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01352261626.07
79 rdf:type schema:Person
80 sg:person.0707276245.73 schema:affiliation Nbc11d9da72bb41eeada16862e61247e6
81 schema:familyName Castiglione
82 schema:givenName P.
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0707276245.73
84 rdf:type schema:Person
85 https://www.grid.ac/institutes/grid.5606.5 schema:alternateName University of Genoa
86 schema:name INFM-Dipartimento di Fisica, Università di Genova, 16146 Genova, Italy, IT
87 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...