Simple stochastic models showing strong anomalous diffusion View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2000-12

AUTHORS

K.H. Andersen, P. Castiglione, A. Mazzino, A. Vulpiani

ABSTRACT

We show that strong anomalous diffusion, i.e.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} is a nonlinear function of q, is a generic phenomenon within a class of generalized continuous-time random walks. For such class of systems it is possible to compute analytically \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} where n is an integer number. The presence of strong anomalous diffusion implies that the data collapse of the probability density function \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} cannot hold, a part (sometimes) in the limit of very small \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}, now \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}. Moreover the comparison with previous numerical results shows that the shape of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} is not universal, i.e., one can have systems with the same \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} but different F. More... »

PAGES

447-452

Journal

TITLE

The European Physical Journal B

ISSUE

3

VOLUME

18

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s100510070032

DOI

http://dx.doi.org/10.1007/s100510070032

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1020694755


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Dipartimento di Fisica, and INFM, Universit\u00e0\u201cLa Sapienza\u201d, P.le A. Moro 2, 00185 Roma, Italy, IT"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Andersen", 
        "givenName": "K.H.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Dipartimento di Fisica, and INFM, Universit\u00e0\u201cLa Sapienza\u201d, P.le A. Moro 2, 00185 Roma, Italy, IT"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Castiglione", 
        "givenName": "P.", 
        "id": "sg:person.0707276245.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0707276245.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Genoa", 
          "id": "https://www.grid.ac/institutes/grid.5606.5", 
          "name": [
            "INFM-Dipartimento di Fisica, Universit\u00e0 di Genova, 16146 Genova, Italy, IT"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mazzino", 
        "givenName": "A.", 
        "id": "sg:person.01333311426.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333311426.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Dipartimento di Fisica, and INFM, Universit\u00e0\u201cLa Sapienza\u201d, P.le A. Moro 2, 00185 Roma, Italy, IT"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vulpiani", 
        "givenName": "A.", 
        "id": "sg:person.01352261626.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01352261626.07"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2000-12", 
    "datePublishedReg": "2000-12-01", 
    "description": "We show that strong anomalous diffusion, i.e.\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}\\end{document} where \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}\\end{document} is a nonlinear function of q, is a generic phenomenon within a class of generalized continuous-time random walks. For such class of systems it is possible to compute analytically \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}\\end{document} where n is an integer number. The presence of strong anomalous diffusion implies that the data collapse of the probability density function \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}\\end{document} cannot hold, a part (sometimes) in the limit of very small \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}\\end{document}, now \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}\\end{document}. Moreover the comparison with previous numerical results shows that the shape of \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}\\end{document} is not universal, i.e., one can have systems with the same \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}\\end{document} but different F.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s100510070032", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1129956", 
        "issn": [
          "1155-4304", 
          "1286-4862"
        ], 
        "name": "The European Physical Journal B", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "18"
      }
    ], 
    "name": "Simple stochastic models showing strong anomalous diffusion", 
    "pagination": "447-452", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "629aeaa553c7edb3f3d15c043a85a9b70a0557c48934e84c10e5f0b8e4fb7619"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s100510070032"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1020694755"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s100510070032", 
      "https://app.dimensions.ai/details/publication/pub.1020694755"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000488.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s100510070032"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s100510070032'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s100510070032'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s100510070032'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s100510070032'


 

This table displays all metadata directly associated to this object as RDF triples.

87 TRIPLES      20 PREDICATES      27 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s100510070032 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N84847673a77044c7b491e7a5fa92a203
4 schema:datePublished 2000-12
5 schema:datePublishedReg 2000-12-01
6 schema:description We show that strong anomalous diffusion, i.e.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} is a nonlinear function of q, is a generic phenomenon within a class of generalized continuous-time random walks. For such class of systems it is possible to compute analytically \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} where n is an integer number. The presence of strong anomalous diffusion implies that the data collapse of the probability density function \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} cannot hold, a part (sometimes) in the limit of very small \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}, now \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}. Moreover the comparison with previous numerical results shows that the shape of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} is not universal, i.e., one can have systems with the same \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} but different F.
7 schema:genre research_article
8 schema:inLanguage en
9 schema:isAccessibleForFree true
10 schema:isPartOf N8989ea02f623454b93726d2cfd5b5999
11 Nea45a967a0c249d485d1587797e87f27
12 sg:journal.1129956
13 schema:name Simple stochastic models showing strong anomalous diffusion
14 schema:pagination 447-452
15 schema:productId N07d211ef7f7b45f0919ef97408c60f5a
16 Nbf7fc0e610d34c19929f6317eec8d544
17 Ne66bf865891c45b7842bfe1a59c3bc76
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020694755
19 https://doi.org/10.1007/s100510070032
20 schema:sdDatePublished 2019-04-10T19:03
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher N2a19a2ebf99647d7a28b9dfe7220c2aa
23 schema:url http://link.springer.com/10.1007/s100510070032
24 sgo:license sg:explorer/license/
25 sgo:sdDataset articles
26 rdf:type schema:ScholarlyArticle
27 N07d211ef7f7b45f0919ef97408c60f5a schema:name doi
28 schema:value 10.1007/s100510070032
29 rdf:type schema:PropertyValue
30 N1e54a0d73862489684e8b12f07ecf68a schema:name Dipartimento di Fisica, and INFM, Università“La Sapienza”, P.le A. Moro 2, 00185 Roma, Italy, IT
31 rdf:type schema:Organization
32 N2a19a2ebf99647d7a28b9dfe7220c2aa schema:name Springer Nature - SN SciGraph project
33 rdf:type schema:Organization
34 N3f14986eb7b64d69a6537383a55899bd schema:affiliation N1e54a0d73862489684e8b12f07ecf68a
35 schema:familyName Andersen
36 schema:givenName K.H.
37 rdf:type schema:Person
38 N5e7dbb574f554f53b6e93190569422ca rdf:first sg:person.01333311426.27
39 rdf:rest N68d418179afd43b997bd62af15045d4c
40 N68d418179afd43b997bd62af15045d4c rdf:first sg:person.01352261626.07
41 rdf:rest rdf:nil
42 N6ac90529ba9f4d479b175a9bb866c08e rdf:first sg:person.0707276245.73
43 rdf:rest N5e7dbb574f554f53b6e93190569422ca
44 N84847673a77044c7b491e7a5fa92a203 rdf:first N3f14986eb7b64d69a6537383a55899bd
45 rdf:rest N6ac90529ba9f4d479b175a9bb866c08e
46 N8989ea02f623454b93726d2cfd5b5999 schema:issueNumber 3
47 rdf:type schema:PublicationIssue
48 N9d9d4903479c49ee9644c32feaf0626e schema:name Dipartimento di Fisica, and INFM, Università“La Sapienza”, P.le A. Moro 2, 00185 Roma, Italy, IT
49 rdf:type schema:Organization
50 Nbf7fc0e610d34c19929f6317eec8d544 schema:name dimensions_id
51 schema:value pub.1020694755
52 rdf:type schema:PropertyValue
53 Nd6fd10f010004ad38343159d00b39cd7 schema:name Dipartimento di Fisica, and INFM, Università“La Sapienza”, P.le A. Moro 2, 00185 Roma, Italy, IT
54 rdf:type schema:Organization
55 Ne66bf865891c45b7842bfe1a59c3bc76 schema:name readcube_id
56 schema:value 629aeaa553c7edb3f3d15c043a85a9b70a0557c48934e84c10e5f0b8e4fb7619
57 rdf:type schema:PropertyValue
58 Nea45a967a0c249d485d1587797e87f27 schema:volumeNumber 18
59 rdf:type schema:PublicationVolume
60 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
61 schema:name Mathematical Sciences
62 rdf:type schema:DefinedTerm
63 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
64 schema:name Statistics
65 rdf:type schema:DefinedTerm
66 sg:journal.1129956 schema:issn 1155-4304
67 1286-4862
68 schema:name The European Physical Journal B
69 rdf:type schema:Periodical
70 sg:person.01333311426.27 schema:affiliation https://www.grid.ac/institutes/grid.5606.5
71 schema:familyName Mazzino
72 schema:givenName A.
73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333311426.27
74 rdf:type schema:Person
75 sg:person.01352261626.07 schema:affiliation Nd6fd10f010004ad38343159d00b39cd7
76 schema:familyName Vulpiani
77 schema:givenName A.
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01352261626.07
79 rdf:type schema:Person
80 sg:person.0707276245.73 schema:affiliation N9d9d4903479c49ee9644c32feaf0626e
81 schema:familyName Castiglione
82 schema:givenName P.
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0707276245.73
84 rdf:type schema:Person
85 https://www.grid.ac/institutes/grid.5606.5 schema:alternateName University of Genoa
86 schema:name INFM-Dipartimento di Fisica, Università di Genova, 16146 Genova, Italy, IT
87 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...