Ageing of random porous media following fluid deterministic displacement, freezing, thawing View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2000-04

AUTHORS

Ju-Ping Tian, Kai-Lun Yao

ABSTRACT

: This paper introduces and investigates a simple model of random porous media degradation via several fluid displacing, freezing, and thawing cycles. The fluid transport is based on the deterministic method. The result shows that the topology and the geometry of porous media have a strong effect on displacement processes. The cluster size of the viscous fingering (VF) pattern in the percolation cluster increases with the increase of iteration parameter n. When iteration parameter \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge 10$$\end{document}, the VF pattern does not change with n. When \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r \to 1$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge 5$$\end{document}, the peak value of the distribution Nmat(r) increases as n increases; Nmat(r) is the normalized distribution of throat sizes after different displacement-damage but before the freezing. The distribution of throat size N(r) after displacement but before freezing damage, shows that the major change, after successive cycles, happens at r>0.9. The peak value of the distribution Ninv(r) reaches a maximum when \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge 10$$\end{document} and r=1, where Ninv is the normalized distribution of the size of invaded throats for different iterations. This result is different from invasion percolation. The distribution of velocities normal to the interface of VF in the percolation cluster is also studied. When \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge 10$$\end{document}, the scaling function distribution is very sharp. The sweep efficiency E increases along with the increasing of iteration parameter n and decreases with the network size L. And E has a minimum as L increases to the maximum size of the lattice. The VF pattern in the percolation cluster has one frozen zone and one active zone. More... »

PAGES

543-549

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s100510051064

DOI

http://dx.doi.org/10.1007/s100510051064

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1046242997


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Physics Department of Wuhan Institute of Science and Technology, 430073, Wuhan, P.R., China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Physics Department of Wuhan Institute of Science and Technology, 430073, Wuhan, P.R., China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tian", 
        "givenName": "Ju-Ping", 
        "id": "sg:person.010317041577.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010317041577.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "CCAST (World Laboratory), 8730, 100080, Beijing, P.R., China", 
          "id": "http://www.grid.ac/institutes/grid.464262.0", 
          "name": [
            "CCAST (World Laboratory), 8730, 100080, Beijing, P.R., China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yao", 
        "givenName": "Kai-Lun", 
        "id": "sg:person.012133406471.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012133406471.13"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2000-04", 
    "datePublishedReg": "2000-04-01", 
    "description": "Abstract: This paper introduces and investigates a simple model of random porous media degradation via several fluid displacing, freezing, and thawing cycles. The fluid transport is based on the deterministic method. The result shows that the topology and the geometry of porous media have a strong effect on displacement processes. The cluster size of the viscous fingering (VF) pattern in the percolation cluster increases with the increase of iteration parameter n. When iteration parameter \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$n \\ge 10$$\\end{document}, the VF pattern does not change with n. When \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$r \\to 1$$\\end{document} and \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$n \\ge 5$$\\end{document}, the peak value of the distribution Nmat(r) increases as n increases; Nmat(r) is the normalized distribution of throat sizes after different displacement-damage but before the freezing. The distribution of throat size N(r) after displacement but before freezing damage, shows that the major change, after successive cycles, happens at r>0.9. The peak value of the distribution Ninv(r) reaches a maximum when \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$n \\ge 10$$\\end{document} and r=1, where Ninv is the normalized distribution of the size of invaded throats for different iterations. This result is different from invasion percolation. The distribution of velocities normal to the interface of VF in the percolation cluster is also studied. When \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$n \\ge 10$$\\end{document}, the scaling function distribution is very sharp. The sweep efficiency E increases along with the increasing of iteration parameter n and decreases with the network size L. And E has a minimum as L increases to the maximum size of the lattice. The VF pattern in the percolation cluster has one frozen zone and one active zone.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s100510051064", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1129956", 
        "issn": [
          "1155-4304", 
          "1286-4862"
        ], 
        "name": "The European Physical Journal B", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "14"
      }
    ], 
    "keywords": [
      "percolation clusters", 
      "porous media", 
      "random porous media", 
      "iteration parameters", 
      "normalized distribution", 
      "distribution of velocity", 
      "deterministic methods", 
      "size L.", 
      "deterministic displacement", 
      "invasion percolation", 
      "parameter n.", 
      "function distribution", 
      "parameter n", 
      "viscous fingering patterns", 
      "cluster size", 
      "simple model", 
      "n increases", 
      "fingering patterns", 
      "different iterations", 
      "displacement process", 
      "iteration", 
      "distribution", 
      "frozen zone", 
      "maximum size", 
      "lattice", 
      "topology", 
      "geometry", 
      "clusters", 
      "percolation", 
      "fluid transport", 
      "Ninv", 
      "throat size", 
      "efficiency E", 
      "velocity", 
      "displacement", 
      "peak value", 
      "parameters", 
      "medium degradation", 
      "model", 
      "VF patterns", 
      "minimum", 
      "size", 
      "displacing", 
      "n.", 
      "results", 
      "values", 
      "medium", 
      "transport", 
      "freezing", 
      "zone", 
      "strong effect", 
      "process", 
      "interface", 
      "L increase", 
      "active zone", 
      "patterns", 
      "increasing", 
      "effect", 
      "VF", 
      "cycle", 
      "increase", 
      "throat", 
      "changes", 
      "successive cycles", 
      "degradation", 
      "major changes", 
      "damage", 
      "L.", 
      "freezing damage", 
      "paper", 
      "method"
    ], 
    "name": "Ageing of random porous media following fluid deterministic displacement, freezing, thawing", 
    "pagination": "543-549", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1046242997"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s100510051064"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s100510051064", 
      "https://app.dimensions.ai/details/publication/pub.1046242997"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:22", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_305.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s100510051064"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s100510051064'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s100510051064'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s100510051064'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s100510051064'


 

This table displays all metadata directly associated to this object as RDF triples.

138 TRIPLES      20 PREDICATES      96 URIs      88 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s100510051064 schema:about anzsrc-for:01
2 anzsrc-for:02
3 schema:author N2f03764d9d7b482d87dbe13ff248882c
4 schema:datePublished 2000-04
5 schema:datePublishedReg 2000-04-01
6 schema:description Abstract: This paper introduces and investigates a simple model of random porous media degradation via several fluid displacing, freezing, and thawing cycles. The fluid transport is based on the deterministic method. The result shows that the topology and the geometry of porous media have a strong effect on displacement processes. The cluster size of the viscous fingering (VF) pattern in the percolation cluster increases with the increase of iteration parameter n. When iteration parameter \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge 10$$\end{document}, the VF pattern does not change with n. When \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r \to 1$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge 5$$\end{document}, the peak value of the distribution Nmat(r) increases as n increases; Nmat(r) is the normalized distribution of throat sizes after different displacement-damage but before the freezing. The distribution of throat size N(r) after displacement but before freezing damage, shows that the major change, after successive cycles, happens at r>0.9. The peak value of the distribution Ninv(r) reaches a maximum when \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge 10$$\end{document} and r=1, where Ninv is the normalized distribution of the size of invaded throats for different iterations. This result is different from invasion percolation. The distribution of velocities normal to the interface of VF in the percolation cluster is also studied. When \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge 10$$\end{document}, the scaling function distribution is very sharp. The sweep efficiency E increases along with the increasing of iteration parameter n and decreases with the network size L. And E has a minimum as L increases to the maximum size of the lattice. The VF pattern in the percolation cluster has one frozen zone and one active zone.
7 schema:genre article
8 schema:isAccessibleForFree false
9 schema:isPartOf N1fe9b2fe74e84164ae81a1c1c2cdc450
10 Ncaf07616a13e484ca143289b288c755c
11 sg:journal.1129956
12 schema:keywords L increase
13 L.
14 Ninv
15 VF
16 VF patterns
17 active zone
18 changes
19 cluster size
20 clusters
21 cycle
22 damage
23 degradation
24 deterministic displacement
25 deterministic methods
26 different iterations
27 displacement
28 displacement process
29 displacing
30 distribution
31 distribution of velocity
32 effect
33 efficiency E
34 fingering patterns
35 fluid transport
36 freezing
37 freezing damage
38 frozen zone
39 function distribution
40 geometry
41 increase
42 increasing
43 interface
44 invasion percolation
45 iteration
46 iteration parameters
47 lattice
48 major changes
49 maximum size
50 medium
51 medium degradation
52 method
53 minimum
54 model
55 n increases
56 n.
57 normalized distribution
58 paper
59 parameter n
60 parameter n.
61 parameters
62 patterns
63 peak value
64 percolation
65 percolation clusters
66 porous media
67 process
68 random porous media
69 results
70 simple model
71 size
72 size L.
73 strong effect
74 successive cycles
75 throat
76 throat size
77 topology
78 transport
79 values
80 velocity
81 viscous fingering patterns
82 zone
83 schema:name Ageing of random porous media following fluid deterministic displacement, freezing, thawing
84 schema:pagination 543-549
85 schema:productId N80e4f23c74bf478c9f51e3d952086504
86 Nd479096696504181809a5dc161140853
87 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046242997
88 https://doi.org/10.1007/s100510051064
89 schema:sdDatePublished 2022-12-01T06:22
90 schema:sdLicense https://scigraph.springernature.com/explorer/license/
91 schema:sdPublisher N1430368d166145cf81a7ab7593f24638
92 schema:url https://doi.org/10.1007/s100510051064
93 sgo:license sg:explorer/license/
94 sgo:sdDataset articles
95 rdf:type schema:ScholarlyArticle
96 N1430368d166145cf81a7ab7593f24638 schema:name Springer Nature - SN SciGraph project
97 rdf:type schema:Organization
98 N1fe9b2fe74e84164ae81a1c1c2cdc450 schema:volumeNumber 14
99 rdf:type schema:PublicationVolume
100 N2f03764d9d7b482d87dbe13ff248882c rdf:first sg:person.010317041577.32
101 rdf:rest Ne0257e56e66a4da99ddff02b49c88581
102 N80e4f23c74bf478c9f51e3d952086504 schema:name doi
103 schema:value 10.1007/s100510051064
104 rdf:type schema:PropertyValue
105 Ncaf07616a13e484ca143289b288c755c schema:issueNumber 3
106 rdf:type schema:PublicationIssue
107 Nd479096696504181809a5dc161140853 schema:name dimensions_id
108 schema:value pub.1046242997
109 rdf:type schema:PropertyValue
110 Ne0257e56e66a4da99ddff02b49c88581 rdf:first sg:person.012133406471.13
111 rdf:rest rdf:nil
112 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
113 schema:name Mathematical Sciences
114 rdf:type schema:DefinedTerm
115 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
116 schema:name Physical Sciences
117 rdf:type schema:DefinedTerm
118 sg:journal.1129956 schema:issn 1155-4304
119 1286-4862
120 schema:name The European Physical Journal B
121 schema:publisher Springer Nature
122 rdf:type schema:Periodical
123 sg:person.010317041577.32 schema:affiliation grid-institutes:None
124 schema:familyName Tian
125 schema:givenName Ju-Ping
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010317041577.32
127 rdf:type schema:Person
128 sg:person.012133406471.13 schema:affiliation grid-institutes:grid.464262.0
129 schema:familyName Yao
130 schema:givenName Kai-Lun
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012133406471.13
132 rdf:type schema:Person
133 grid-institutes:None schema:alternateName Physics Department of Wuhan Institute of Science and Technology, 430073, Wuhan, P.R., China
134 schema:name Physics Department of Wuhan Institute of Science and Technology, 430073, Wuhan, P.R., China
135 rdf:type schema:Organization
136 grid-institutes:grid.464262.0 schema:alternateName CCAST (World Laboratory), 8730, 100080, Beijing, P.R., China
137 schema:name CCAST (World Laboratory), 8730, 100080, Beijing, P.R., China
138 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...