Field theoretical calculation of the specific heat exponent for a classical N-vector model in a random external field View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1998-07

AUTHORS

K. Ghosh, A. Dutta, J.K. Bhattacharjee

ABSTRACT

: We calculate using diagrammatic perturbation theory in the two-loop approximation, the specific heat exponent α for the classical N-vector model in a random external field for spatial dimension (D) lying between four and six. The calculation supports the modified hyperscaling \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(D - 2)\nu = 2 - \alpha $$ \end{document}, where υ is the correlation length exponent. More... »

PAGES

219-221

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s100510050372

DOI

http://dx.doi.org/10.1007/s100510050372

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1013719267


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Theoretical Physics, Indian Association For Cultivation of Science, Jadavpur, 700032, Calcutta, India", 
          "id": "http://www.grid.ac/institutes/grid.417929.0", 
          "name": [
            "Department of Theoretical Physics, Indian Association For Cultivation of Science, Jadavpur, 700032, Calcutta, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ghosh", 
        "givenName": "K.", 
        "id": "sg:person.013672576420.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013672576420.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Theoretical Physics, Indian Association For Cultivation of Science, Jadavpur, 700032, Calcutta, India", 
          "id": "http://www.grid.ac/institutes/grid.417929.0", 
          "name": [
            "Department of Theoretical Physics, Indian Association For Cultivation of Science, Jadavpur, 700032, Calcutta, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dutta", 
        "givenName": "A.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Theoretical Physics, Indian Association For Cultivation of Science, Jadavpur, 700032, Calcutta, India", 
          "id": "http://www.grid.ac/institutes/grid.417929.0", 
          "name": [
            "Department of Theoretical Physics, Indian Association For Cultivation of Science, Jadavpur, 700032, Calcutta, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bhattacharjee", 
        "givenName": "J.K.", 
        "id": "sg:person.015365735162.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015365735162.55"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1998-07", 
    "datePublishedReg": "1998-07-01", 
    "description": "Abstract: We calculate using diagrammatic perturbation theory in the two-loop approximation, the specific heat exponent \u03b1 for the classical N-vector model in a random external field for spatial dimension (D) lying between four and six. The calculation supports the modified hyperscaling \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$(D - 2)\\nu  = 2 - \\alpha $$\n\\end{document}, where \u03c5 is the correlation length exponent.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s100510050372", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1129956", 
        "issn": [
          "1155-4304", 
          "1286-4862"
        ], 
        "name": "The European Physical Journal B", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "4"
      }
    ], 
    "keywords": [
      "random external field", 
      "two-loop approximation", 
      "vector model", 
      "specific heat exponent", 
      "diagrammatic perturbation theory", 
      "perturbation theory", 
      "specific heat exponent \u03b1", 
      "correlation length exponent", 
      "spatial dimensions", 
      "external field", 
      "length exponent", 
      "exponent \u03b1", 
      "exponent", 
      "approximation", 
      "field theoretical calculations", 
      "hyperscaling", 
      "model", 
      "theory", 
      "calculations", 
      "field", 
      "dimensions", 
      "theoretical calculations", 
      "heat exponent \u03b1", 
      "modified hyperscaling", 
      "heat exponent"
    ], 
    "name": "Field theoretical calculation of the specific heat exponent for a classical N-vector model in a random external field", 
    "pagination": "219-221", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1013719267"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s100510050372"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s100510050372", 
      "https://app.dimensions.ai/details/publication/pub.1013719267"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:02", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_300.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s100510050372"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s100510050372'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s100510050372'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s100510050372'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s100510050372'


 

This table displays all metadata directly associated to this object as RDF triples.

96 TRIPLES      21 PREDICATES      51 URIs      43 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s100510050372 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Na918eac638ca41b98827c550ef3556c4
4 schema:datePublished 1998-07
5 schema:datePublishedReg 1998-07-01
6 schema:description Abstract: We calculate using diagrammatic perturbation theory in the two-loop approximation, the specific heat exponent α for the classical N-vector model in a random external field for spatial dimension (D) lying between four and six. The calculation supports the modified hyperscaling \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(D - 2)\nu = 2 - \alpha $$ \end{document}, where υ is the correlation length exponent.
7 schema:genre article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N9716fd7ae8fa4c3b925c363f24d6c2be
11 N9d58f9e0244f42be8722bea141af9d7b
12 sg:journal.1129956
13 schema:keywords approximation
14 calculations
15 correlation length exponent
16 diagrammatic perturbation theory
17 dimensions
18 exponent
19 exponent α
20 external field
21 field
22 field theoretical calculations
23 heat exponent
24 heat exponent α
25 hyperscaling
26 length exponent
27 model
28 modified hyperscaling
29 perturbation theory
30 random external field
31 spatial dimensions
32 specific heat exponent
33 specific heat exponent α
34 theoretical calculations
35 theory
36 two-loop approximation
37 vector model
38 schema:name Field theoretical calculation of the specific heat exponent for a classical N-vector model in a random external field
39 schema:pagination 219-221
40 schema:productId N064405c508b9407086c311183bdc2cce
41 N1ea5ebb5d4f4439a9a17102248bd2e71
42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013719267
43 https://doi.org/10.1007/s100510050372
44 schema:sdDatePublished 2021-11-01T18:02
45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
46 schema:sdPublisher N52583f9e10634a60a02507a061227e60
47 schema:url https://doi.org/10.1007/s100510050372
48 sgo:license sg:explorer/license/
49 sgo:sdDataset articles
50 rdf:type schema:ScholarlyArticle
51 N064405c508b9407086c311183bdc2cce schema:name dimensions_id
52 schema:value pub.1013719267
53 rdf:type schema:PropertyValue
54 N13c05b9041aa450ab084c05f87d44acb rdf:first sg:person.015365735162.55
55 rdf:rest rdf:nil
56 N1ea5ebb5d4f4439a9a17102248bd2e71 schema:name doi
57 schema:value 10.1007/s100510050372
58 rdf:type schema:PropertyValue
59 N3bcb6ec5d31e4127b2137fe1bb647c2c schema:affiliation grid-institutes:grid.417929.0
60 schema:familyName Dutta
61 schema:givenName A.
62 rdf:type schema:Person
63 N482e2f88dbe64298ac727f018a4f3a61 rdf:first N3bcb6ec5d31e4127b2137fe1bb647c2c
64 rdf:rest N13c05b9041aa450ab084c05f87d44acb
65 N52583f9e10634a60a02507a061227e60 schema:name Springer Nature - SN SciGraph project
66 rdf:type schema:Organization
67 N9716fd7ae8fa4c3b925c363f24d6c2be schema:volumeNumber 4
68 rdf:type schema:PublicationVolume
69 N9d58f9e0244f42be8722bea141af9d7b schema:issueNumber 2
70 rdf:type schema:PublicationIssue
71 Na918eac638ca41b98827c550ef3556c4 rdf:first sg:person.013672576420.06
72 rdf:rest N482e2f88dbe64298ac727f018a4f3a61
73 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
74 schema:name Mathematical Sciences
75 rdf:type schema:DefinedTerm
76 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
77 schema:name Pure Mathematics
78 rdf:type schema:DefinedTerm
79 sg:journal.1129956 schema:issn 1155-4304
80 1286-4862
81 schema:name The European Physical Journal B
82 schema:publisher Springer Nature
83 rdf:type schema:Periodical
84 sg:person.013672576420.06 schema:affiliation grid-institutes:grid.417929.0
85 schema:familyName Ghosh
86 schema:givenName K.
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013672576420.06
88 rdf:type schema:Person
89 sg:person.015365735162.55 schema:affiliation grid-institutes:grid.417929.0
90 schema:familyName Bhattacharjee
91 schema:givenName J.K.
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015365735162.55
93 rdf:type schema:Person
94 grid-institutes:grid.417929.0 schema:alternateName Department of Theoretical Physics, Indian Association For Cultivation of Science, Jadavpur, 700032, Calcutta, India
95 schema:name Department of Theoretical Physics, Indian Association For Cultivation of Science, Jadavpur, 700032, Calcutta, India
96 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...