Quantum rotors with regular frustration and the quantum Lifshitz point View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1998-05

AUTHORS

A. Dutta, J.K. Bhattacharjee, B.K. Chakrabarti

ABSTRACT

: We have discussed the zero-temperature quantum phase transition in n-component quantum rotor Hamiltonian in the presence of regular frustration in the interaction. The phase diagram consists of ferromagnetic, helical and quantum paramagnetic phase, where the ferro-para and the helical-para phase boundary meets at a multicritical point called a (d,m) quantum Lifshitz point where (d,m) indicates that the m of the d spatial dimensions incorporate frustration. We have studied the Hamiltonian in the vicinity of the quantum Lifshitz point in the spherical limit and also studied the renormalisation group flow behaviour using standard momentum space renormalisation technique (for finite n). In the spherical limit (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(n \to \infty )$$ \end{document})one finds that the helical phase does not exist in the presence of any nonvanishing quantum fluctuation for m =d though the quantum Lifshitz point exists for all d > 1+m/2, and the upper critical dimensionality is given by du = 3 +m/2. The scaling behaviour in the neighbourhood of a quantum Lifshitz point in d dimensions is consistent with the behaviour near the classical Lifshitz point in (d+z) dimensions. The dynamical exponent of the quantum Hamiltonian z is unity in the case of anisotropic Lifshitz point (d>m) whereas z=2 in the case of isotropic Lifshitz point (d=m). We have evaluated all the exponents using the renormalisation flow equations along-with the scaling relations near the quantum Lifshitz point. We have also obtained the exponents in the spherical limit (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(n \to \infty )$$ \end{document}). It has also been shown that the exponents in the spherical model are all related to those of the corresponding Gaussian model by Fisher renormalisation. More... »

PAGES

97-103

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s100510050287

DOI

http://dx.doi.org/10.1007/s100510050287

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1003648135


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Saha Institute of Nuclear Physics, 1/AF Bidhannagar, 700064, Calcutta, India", 
          "id": "http://www.grid.ac/institutes/grid.473481.d", 
          "name": [
            "Saha Institute of Nuclear Physics, 1/AF Bidhannagar, 700064, Calcutta, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dutta", 
        "givenName": "A.", 
        "id": "sg:person.013777713203.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013777713203.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Indian Association for the Cultivation of Science, Jadavpur, 700032, Calcutta, India", 
          "id": "http://www.grid.ac/institutes/grid.417929.0", 
          "name": [
            "Indian Association for the Cultivation of Science, Jadavpur, 700032, Calcutta, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bhattacharjee", 
        "givenName": "J.K.", 
        "id": "sg:person.015365735162.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015365735162.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Saha Institute of Nuclear Physics, 1/AF Bidhannagar, 700064, Calcutta, India", 
          "id": "http://www.grid.ac/institutes/grid.473481.d", 
          "name": [
            "Saha Institute of Nuclear Physics, 1/AF Bidhannagar, 700064, Calcutta, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chakrabarti", 
        "givenName": "B.K.", 
        "id": "sg:person.01277553212.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01277553212.41"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1998-05", 
    "datePublishedReg": "1998-05-01", 
    "description": "Abstract: We have discussed the zero-temperature quantum phase transition in n-component quantum rotor Hamiltonian in the presence of regular frustration in the interaction. The phase diagram consists of ferromagnetic, helical and quantum paramagnetic phase, where the ferro-para and the helical-para phase boundary meets at a multicritical point called a (d,m) quantum Lifshitz point where (d,m) indicates that the m of the d spatial dimensions incorporate frustration. We have studied the Hamiltonian in the vicinity of the quantum Lifshitz point in the spherical limit and also studied the renormalisation group flow behaviour using standard momentum space renormalisation technique (for finite n). In the spherical limit (\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$(n \\to \\infty )$$\n\\end{document})one finds that the helical phase does not exist in the presence of any nonvanishing quantum fluctuation for m =d though the quantum Lifshitz point exists for all d > 1+m/2, and the upper critical dimensionality is given by du = 3 +m/2. The scaling behaviour in the neighbourhood of a quantum Lifshitz point in d dimensions is consistent with the behaviour near the classical Lifshitz point in (d+z) dimensions. The dynamical exponent of the quantum Hamiltonian z is unity in the case of anisotropic Lifshitz point (d>m) whereas z=2 in the case of isotropic Lifshitz point (d=m). We have evaluated all the exponents using the renormalisation flow equations along-with the scaling relations near the quantum Lifshitz point. We have also obtained the exponents in the spherical limit (\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$(n \\to \\infty )$$\n\\end{document}). It has also been shown that the exponents in the spherical model are all related to those of the corresponding Gaussian model by Fisher renormalisation.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s100510050287", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1129956", 
        "issn": [
          "1155-4304", 
          "1286-4862"
        ], 
        "name": "The European Physical Journal B", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "3"
      }
    ], 
    "keywords": [
      "quantum Lifshitz point", 
      "zero-temperature quantum phase transition", 
      "regular frustration", 
      "quantum phase transition", 
      "anisotropic Lifshitz point", 
      "quantum paramagnetic phase", 
      "quantum fluctuations", 
      "quantum rotor", 
      "spherical limit", 
      "Lifshitz point", 
      "helical phase", 
      "Fisher renormalisation", 
      "rotor Hamiltonian", 
      "paramagnetic phase", 
      "corresponding Gaussian model", 
      "phase transition", 
      "renormalisation technique", 
      "dynamical exponent", 
      "ferro-para", 
      "isotropic Lifshitz points", 
      "Hamiltonian", 
      "phase diagram", 
      "spherical model", 
      "spatial dimensions", 
      "multicritical point", 
      "limit", 
      "phase", 
      "transition", 
      "renormalisation", 
      "fluctuations", 
      "vicinity", 
      "frustration", 
      "diagram", 
      "exponent", 
      "interaction", 
      "unity", 
      "dimensions", 
      "upper critical dimensionality", 
      "equations", 
      "behavior", 
      "technique", 
      "Gaussian model", 
      "dimensionality", 
      "critical dimensionality", 
      "model", 
      "presence", 
      "point", 
      "cases", 
      "neighborhood", 
      "relation", 
      "rotor", 
      "DU", 
      "flow equations", 
      "flow behavior", 
      "component quantum rotor Hamiltonian", 
      "quantum rotor Hamiltonian", 
      "helical-para phase", 
      "renormalisation group flow behaviour", 
      "group flow behaviour", 
      "standard momentum space renormalisation technique", 
      "momentum space renormalisation technique", 
      "space renormalisation technique", 
      "classical Lifshitz point", 
      "renormalisation flow equations"
    ], 
    "name": "Quantum rotors with regular frustration and the quantum Lifshitz point", 
    "pagination": "97-103", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1003648135"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s100510050287"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s100510050287", 
      "https://app.dimensions.ai/details/publication/pub.1003648135"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_287.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s100510050287"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s100510050287'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s100510050287'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s100510050287'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s100510050287'


 

This table displays all metadata directly associated to this object as RDF triples.

139 TRIPLES      21 PREDICATES      90 URIs      82 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s100510050287 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author Nd7f9134b4f964f84997ab61f1206caf8
4 schema:datePublished 1998-05
5 schema:datePublishedReg 1998-05-01
6 schema:description Abstract: We have discussed the zero-temperature quantum phase transition in n-component quantum rotor Hamiltonian in the presence of regular frustration in the interaction. The phase diagram consists of ferromagnetic, helical and quantum paramagnetic phase, where the ferro-para and the helical-para phase boundary meets at a multicritical point called a (d,m) quantum Lifshitz point where (d,m) indicates that the m of the d spatial dimensions incorporate frustration. We have studied the Hamiltonian in the vicinity of the quantum Lifshitz point in the spherical limit and also studied the renormalisation group flow behaviour using standard momentum space renormalisation technique (for finite n). In the spherical limit (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(n \to \infty )$$ \end{document})one finds that the helical phase does not exist in the presence of any nonvanishing quantum fluctuation for m =d though the quantum Lifshitz point exists for all d > 1+m/2, and the upper critical dimensionality is given by du = 3 +m/2. The scaling behaviour in the neighbourhood of a quantum Lifshitz point in d dimensions is consistent with the behaviour near the classical Lifshitz point in (d+z) dimensions. The dynamical exponent of the quantum Hamiltonian z is unity in the case of anisotropic Lifshitz point (d>m) whereas z=2 in the case of isotropic Lifshitz point (d=m). We have evaluated all the exponents using the renormalisation flow equations along-with the scaling relations near the quantum Lifshitz point. We have also obtained the exponents in the spherical limit (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(n \to \infty )$$ \end{document}). It has also been shown that the exponents in the spherical model are all related to those of the corresponding Gaussian model by Fisher renormalisation.
7 schema:genre article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N44b87fb4554f4949866e122474a52041
11 N95543bdf88f34bab8efe73422947f0d4
12 sg:journal.1129956
13 schema:keywords DU
14 Fisher renormalisation
15 Gaussian model
16 Hamiltonian
17 Lifshitz point
18 anisotropic Lifshitz point
19 behavior
20 cases
21 classical Lifshitz point
22 component quantum rotor Hamiltonian
23 corresponding Gaussian model
24 critical dimensionality
25 diagram
26 dimensionality
27 dimensions
28 dynamical exponent
29 equations
30 exponent
31 ferro-para
32 flow behavior
33 flow equations
34 fluctuations
35 frustration
36 group flow behaviour
37 helical phase
38 helical-para phase
39 interaction
40 isotropic Lifshitz points
41 limit
42 model
43 momentum space renormalisation technique
44 multicritical point
45 neighborhood
46 paramagnetic phase
47 phase
48 phase diagram
49 phase transition
50 point
51 presence
52 quantum Lifshitz point
53 quantum fluctuations
54 quantum paramagnetic phase
55 quantum phase transition
56 quantum rotor
57 quantum rotor Hamiltonian
58 regular frustration
59 relation
60 renormalisation
61 renormalisation flow equations
62 renormalisation group flow behaviour
63 renormalisation technique
64 rotor
65 rotor Hamiltonian
66 space renormalisation technique
67 spatial dimensions
68 spherical limit
69 spherical model
70 standard momentum space renormalisation technique
71 technique
72 transition
73 unity
74 upper critical dimensionality
75 vicinity
76 zero-temperature quantum phase transition
77 schema:name Quantum rotors with regular frustration and the quantum Lifshitz point
78 schema:pagination 97-103
79 schema:productId N308920c95a7b44bda740232b6c8e9074
80 N4944e2fae605445bb8194ec1a33af0ee
81 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003648135
82 https://doi.org/10.1007/s100510050287
83 schema:sdDatePublished 2022-01-01T18:08
84 schema:sdLicense https://scigraph.springernature.com/explorer/license/
85 schema:sdPublisher N2674f5e41f204f0897e782fca7f0979d
86 schema:url https://doi.org/10.1007/s100510050287
87 sgo:license sg:explorer/license/
88 sgo:sdDataset articles
89 rdf:type schema:ScholarlyArticle
90 N2674f5e41f204f0897e782fca7f0979d schema:name Springer Nature - SN SciGraph project
91 rdf:type schema:Organization
92 N308920c95a7b44bda740232b6c8e9074 schema:name doi
93 schema:value 10.1007/s100510050287
94 rdf:type schema:PropertyValue
95 N44b87fb4554f4949866e122474a52041 schema:issueNumber 1
96 rdf:type schema:PublicationIssue
97 N4944e2fae605445bb8194ec1a33af0ee schema:name dimensions_id
98 schema:value pub.1003648135
99 rdf:type schema:PropertyValue
100 N543a50a2042348e8a32102126329ad43 rdf:first sg:person.015365735162.55
101 rdf:rest N9a42517faaea40e1a6f7a2ea6d225ad0
102 N95543bdf88f34bab8efe73422947f0d4 schema:volumeNumber 3
103 rdf:type schema:PublicationVolume
104 N9a42517faaea40e1a6f7a2ea6d225ad0 rdf:first sg:person.01277553212.41
105 rdf:rest rdf:nil
106 Nd7f9134b4f964f84997ab61f1206caf8 rdf:first sg:person.013777713203.27
107 rdf:rest N543a50a2042348e8a32102126329ad43
108 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
109 schema:name Physical Sciences
110 rdf:type schema:DefinedTerm
111 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
112 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
113 rdf:type schema:DefinedTerm
114 sg:journal.1129956 schema:issn 1155-4304
115 1286-4862
116 schema:name The European Physical Journal B
117 schema:publisher Springer Nature
118 rdf:type schema:Periodical
119 sg:person.01277553212.41 schema:affiliation grid-institutes:grid.473481.d
120 schema:familyName Chakrabarti
121 schema:givenName B.K.
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01277553212.41
123 rdf:type schema:Person
124 sg:person.013777713203.27 schema:affiliation grid-institutes:grid.473481.d
125 schema:familyName Dutta
126 schema:givenName A.
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013777713203.27
128 rdf:type schema:Person
129 sg:person.015365735162.55 schema:affiliation grid-institutes:grid.417929.0
130 schema:familyName Bhattacharjee
131 schema:givenName J.K.
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015365735162.55
133 rdf:type schema:Person
134 grid-institutes:grid.417929.0 schema:alternateName Indian Association for the Cultivation of Science, Jadavpur, 700032, Calcutta, India
135 schema:name Indian Association for the Cultivation of Science, Jadavpur, 700032, Calcutta, India
136 rdf:type schema:Organization
137 grid-institutes:grid.473481.d schema:alternateName Saha Institute of Nuclear Physics, 1/AF Bidhannagar, 700064, Calcutta, India
138 schema:name Saha Institute of Nuclear Physics, 1/AF Bidhannagar, 700064, Calcutta, India
139 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...