To what extent can 3D model replicate dimensions of individual mitral valve prolapse? View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-09

AUTHORS

Takashi Shirakawa, Masao Yoshitatsu, Yasushi Koyama, Akira Kurata, Toru Miyoshi, Hiroki Mizoguchi, Takafumi Masai, Koichi Toda, Yoshiki Sawa

ABSTRACT

Determining the complex geometry of mitral valve prolapse is often difficult. We constructed 3D models of six prolapsed mitral valves for surgical assessment, and evaluated how accurately the models could replicate individual valve dimensions. 3D polygon data were constructed based on an original segmentation method for computed tomography images. The model's replication performance was confirmed via dimensional comparison between the actual hearts during surgery and those models. The results revealed that the prolapsed segments matched in all cases; however, torn chordae were replicated in four cases. The mean height differences were 0.0 mm (SD 1.6, range - 2 to + 2 mm) for the anterolateral side, 0.0 mm (SD 1.7, range - 2 to + 2 mm) for the prolapsed leaflet center, and - 1.5 mm (SD 0.6, range - 1 to - 2 mm) for the posteromedial side. Regression analysis showed a strong and positive correlation, and Bland-Altman plots indicated quantitative similarity of the models to the actual hearts. We concluded that our 3D valve models could replicate the actual mitral valve prolapses within acceptable dimensional differences. Our concepts are useful for better 3D valve creation and better surgical planning with reliable 3D valve models. More... »

PAGES

348-355

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10047-018-1033-6

DOI

http://dx.doi.org/10.1007/s10047-018-1033-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1101623735

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29556869


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged, 80 and over", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mitral Valve", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mitral Valve Insufficiency", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mitral Valve Prolapse", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Anatomic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tomography, X-Ray Computed", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Osaka University", 
          "id": "https://www.grid.ac/institutes/grid.136593.b", 
          "name": [
            "Department of Cardiovascular Surgery, Kansai Rosai Hospital, 3-1-69 Inabaso, 660-8511, Amagasaki, Hyogo, Japan", 
            "Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shirakawa", 
        "givenName": "Takashi", 
        "id": "sg:person.0612501765.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0612501765.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kansai Rosai Hospital", 
          "id": "https://www.grid.ac/institutes/grid.414976.9", 
          "name": [
            "Department of Cardiovascular Surgery, Kansai Rosai Hospital, 3-1-69 Inabaso, 660-8511, Amagasaki, Hyogo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yoshitatsu", 
        "givenName": "Masao", 
        "id": "sg:person.0640760665.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640760665.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sakurabashi Watanabe Hospital", 
          "id": "https://www.grid.ac/institutes/grid.416720.6", 
          "name": [
            "Department of Diagnostic Radiology and Cardiology, Sakurabashi Watanabe Hospital, Osaka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Koyama", 
        "givenName": "Yasushi", 
        "id": "sg:person.01101026741.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101026741.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ehime University", 
          "id": "https://www.grid.ac/institutes/grid.255464.4", 
          "name": [
            "Department of Radiology, Ehime University Graduate School of Medicine, Ehime, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kurata", 
        "givenName": "Akira", 
        "id": "sg:person.01334043574.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01334043574.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Okayama University", 
          "id": "https://www.grid.ac/institutes/grid.261356.5", 
          "name": [
            "Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Okayama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Miyoshi", 
        "givenName": "Toru", 
        "id": "sg:person.0630524420.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0630524420.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kansai Rosai Hospital", 
          "id": "https://www.grid.ac/institutes/grid.414976.9", 
          "name": [
            "Department of Cardiovascular Surgery, Kansai Rosai Hospital, 3-1-69 Inabaso, 660-8511, Amagasaki, Hyogo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mizoguchi", 
        "givenName": "Hiroki", 
        "id": "sg:person.0764166654.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0764166654.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sakurabashi Watanabe Hospital", 
          "id": "https://www.grid.ac/institutes/grid.416720.6", 
          "name": [
            "Department of Cardiovascular Surgery, Sakurabashi Watanabe Hospital, Osaka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Masai", 
        "givenName": "Takafumi", 
        "id": "sg:person.07437532614.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07437532614.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Osaka University", 
          "id": "https://www.grid.ac/institutes/grid.136593.b", 
          "name": [
            "Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Toda", 
        "givenName": "Koichi", 
        "id": "sg:person.01131202323.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01131202323.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Osaka University", 
          "id": "https://www.grid.ac/institutes/grid.136593.b", 
          "name": [
            "Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sawa", 
        "givenName": "Yoshiki", 
        "id": "sg:person.01043032720.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01043032720.21"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1177/2150135114528721", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009411155"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/2150135114528721", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009411155"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.3673773", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013505371"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.echo.2014.12.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020319447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0735-1097(99)00498-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029607955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrcardio.2016.170", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030979554", 
          "https://doi.org/10.1038/nrcardio.2016.170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10439-016-1676-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040139813", 
          "https://doi.org/10.1007/s10439-016-1676-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10439-016-1676-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040139813", 
          "https://doi.org/10.1007/s10439-016-1676-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(86)90837-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040287180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(86)90837-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040287180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejcts.2009.07.046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041147857"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/icvts/ivw009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043021301"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1510/icvts.2007.156588", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044317102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.athoracsur.2014.04.094", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047668688"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082012599", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10047-017-0955-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084023691", 
          "https://doi.org/10.1007/s10047-017-0955-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10047-017-0955-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084023691", 
          "https://doi.org/10.1007/s10047-017-0955-8"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-09", 
    "datePublishedReg": "2018-09-01", 
    "description": "Determining the complex geometry of mitral valve prolapse is often difficult. We constructed 3D models of six prolapsed mitral valves for surgical assessment, and evaluated how accurately the models could replicate individual valve dimensions. 3D polygon data were constructed based on an original segmentation method for computed tomography images. The model's replication performance was confirmed via dimensional comparison between the actual hearts during surgery and those models. The results revealed that the prolapsed segments matched in all cases; however, torn chordae were replicated in four cases. The mean height differences were 0.0\u00a0mm (SD 1.6, range -\u20092 to +\u20092\u00a0mm) for the anterolateral side, 0.0\u00a0mm (SD 1.7, range -\u20092 to +\u20092\u00a0mm) for the prolapsed leaflet center, and -\u20091.5\u00a0mm (SD 0.6, range -\u20091 to -\u20092\u00a0mm) for the posteromedial side. Regression analysis showed a strong and positive correlation, and Bland-Altman plots indicated quantitative similarity of the models to the actual hearts. We concluded that our 3D valve models could replicate the actual mitral valve prolapses within acceptable dimensional differences. Our concepts are useful for better 3D valve creation and better surgical planning with reliable 3D valve models.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10047-018-1033-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1101514", 
        "issn": [
          "1434-7229", 
          "1619-0904"
        ], 
        "name": "Journal of Artificial Organs", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "21"
      }
    ], 
    "name": "To what extent can 3D model replicate dimensions of individual mitral valve prolapse?", 
    "pagination": "348-355", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4820e8a232ccc41d5d418b2a385030456334508cb43144ab54220998ed3158df"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29556869"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9815648"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10047-018-1033-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1101623735"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10047-018-1033-6", 
      "https://app.dimensions.ai/details/publication/pub.1101623735"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:16", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000361_0000000361/records_54015_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10047-018-1033-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10047-018-1033-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10047-018-1033-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10047-018-1033-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10047-018-1033-6'


 

This table displays all metadata directly associated to this object as RDF triples.

220 TRIPLES      21 PREDICATES      52 URIs      31 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10047-018-1033-6 schema:about N555419a5f1754b3eaa9fccdde663147d
2 N5e2c5aaf4c3844ae88a8c9598552f8be
3 N6563fe80a832432d886cac72256b98d6
4 N770395bb96b549318cec6eeca84b9cfe
5 N8a1daebb16b14a7bbfe5dc0cb57f4ae9
6 Ne21646f3c04e4ee7bf60ff17dffe0b05
7 Nebc9c490965e49eba6c49cf646b37467
8 Nef2cb165cb22435bab1a3a3d583c140a
9 Nf06ba359f17b4130ae2c2f5b224c6f7c
10 Nf4026e8546124cc187b3193f77806abc
11 anzsrc-for:08
12 anzsrc-for:0801
13 schema:author N36883451f72944b5aefe13b7fdbe22dc
14 schema:citation sg:pub.10.1007/s10047-017-0955-8
15 sg:pub.10.1007/s10439-016-1676-5
16 sg:pub.10.1038/nrcardio.2016.170
17 https://app.dimensions.ai/details/publication/pub.1082012599
18 https://doi.org/10.1016/j.athoracsur.2014.04.094
19 https://doi.org/10.1016/j.echo.2014.12.016
20 https://doi.org/10.1016/j.ejcts.2009.07.046
21 https://doi.org/10.1016/s0140-6736(86)90837-8
22 https://doi.org/10.1016/s0735-1097(99)00498-2
23 https://doi.org/10.1093/icvts/ivw009
24 https://doi.org/10.1118/1.3673773
25 https://doi.org/10.1177/2150135114528721
26 https://doi.org/10.1510/icvts.2007.156588
27 schema:datePublished 2018-09
28 schema:datePublishedReg 2018-09-01
29 schema:description Determining the complex geometry of mitral valve prolapse is often difficult. We constructed 3D models of six prolapsed mitral valves for surgical assessment, and evaluated how accurately the models could replicate individual valve dimensions. 3D polygon data were constructed based on an original segmentation method for computed tomography images. The model's replication performance was confirmed via dimensional comparison between the actual hearts during surgery and those models. The results revealed that the prolapsed segments matched in all cases; however, torn chordae were replicated in four cases. The mean height differences were 0.0 mm (SD 1.6, range - 2 to + 2 mm) for the anterolateral side, 0.0 mm (SD 1.7, range - 2 to + 2 mm) for the prolapsed leaflet center, and - 1.5 mm (SD 0.6, range - 1 to - 2 mm) for the posteromedial side. Regression analysis showed a strong and positive correlation, and Bland-Altman plots indicated quantitative similarity of the models to the actual hearts. We concluded that our 3D valve models could replicate the actual mitral valve prolapses within acceptable dimensional differences. Our concepts are useful for better 3D valve creation and better surgical planning with reliable 3D valve models.
30 schema:genre research_article
31 schema:inLanguage en
32 schema:isAccessibleForFree false
33 schema:isPartOf N1cb408e3fa3048fd866bab0f0f83a80f
34 Na69ccaaa5cba4c38b90c98fa55080ea5
35 sg:journal.1101514
36 schema:name To what extent can 3D model replicate dimensions of individual mitral valve prolapse?
37 schema:pagination 348-355
38 schema:productId N11cf6d50805e48ee8257bd6effa30fbf
39 N8122726c577d4332a378c7d7d82cf4e4
40 N95d6cff95547494fb9eb3ae9369d2e88
41 Nc26957e9b7554665991c2c16a6823c2a
42 Ne8518aa05f7c4ed2b383e1267852b53b
43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101623735
44 https://doi.org/10.1007/s10047-018-1033-6
45 schema:sdDatePublished 2019-04-11T12:16
46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
47 schema:sdPublisher N321f953c960840129213b9241403e113
48 schema:url https://link.springer.com/10.1007%2Fs10047-018-1033-6
49 sgo:license sg:explorer/license/
50 sgo:sdDataset articles
51 rdf:type schema:ScholarlyArticle
52 N0eb0e6308f194a2c9471702445bfd76d rdf:first sg:person.01131202323.04
53 rdf:rest N161ecee974fa40d5a01309feb84b6223
54 N11cf6d50805e48ee8257bd6effa30fbf schema:name pubmed_id
55 schema:value 29556869
56 rdf:type schema:PropertyValue
57 N161ecee974fa40d5a01309feb84b6223 rdf:first sg:person.01043032720.21
58 rdf:rest rdf:nil
59 N1cb408e3fa3048fd866bab0f0f83a80f schema:volumeNumber 21
60 rdf:type schema:PublicationVolume
61 N1f43eb7fb1d64e829de127d7bce89c61 rdf:first sg:person.01101026741.38
62 rdf:rest N9fe90e8f2ffb41e4918aed03b72d3b4d
63 N321f953c960840129213b9241403e113 schema:name Springer Nature - SN SciGraph project
64 rdf:type schema:Organization
65 N36883451f72944b5aefe13b7fdbe22dc rdf:first sg:person.0612501765.30
66 rdf:rest Ne48f8b0840934b9082657f35f0a3c91d
67 N4533e5f597dd431da7ccc4e9850bdb8a rdf:first sg:person.0764166654.35
68 rdf:rest Nefd38cbf903048d1ab4db6c9e60e2896
69 N555419a5f1754b3eaa9fccdde663147d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
70 schema:name Mitral Valve
71 rdf:type schema:DefinedTerm
72 N5e2c5aaf4c3844ae88a8c9598552f8be schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
73 schema:name Aged
74 rdf:type schema:DefinedTerm
75 N6563fe80a832432d886cac72256b98d6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
76 schema:name Mitral Valve Prolapse
77 rdf:type schema:DefinedTerm
78 N770395bb96b549318cec6eeca84b9cfe schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
79 schema:name Models, Anatomic
80 rdf:type schema:DefinedTerm
81 N8122726c577d4332a378c7d7d82cf4e4 schema:name dimensions_id
82 schema:value pub.1101623735
83 rdf:type schema:PropertyValue
84 N8a1daebb16b14a7bbfe5dc0cb57f4ae9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Mitral Valve Insufficiency
86 rdf:type schema:DefinedTerm
87 N95d6cff95547494fb9eb3ae9369d2e88 schema:name nlm_unique_id
88 schema:value 9815648
89 rdf:type schema:PropertyValue
90 N9fe90e8f2ffb41e4918aed03b72d3b4d rdf:first sg:person.01334043574.35
91 rdf:rest Nb7e946717bd4402cac6f96c6ad89e2c0
92 Na69ccaaa5cba4c38b90c98fa55080ea5 schema:issueNumber 3
93 rdf:type schema:PublicationIssue
94 Nb7e946717bd4402cac6f96c6ad89e2c0 rdf:first sg:person.0630524420.63
95 rdf:rest N4533e5f597dd431da7ccc4e9850bdb8a
96 Nc26957e9b7554665991c2c16a6823c2a schema:name doi
97 schema:value 10.1007/s10047-018-1033-6
98 rdf:type schema:PropertyValue
99 Ne21646f3c04e4ee7bf60ff17dffe0b05 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Aged, 80 and over
101 rdf:type schema:DefinedTerm
102 Ne48f8b0840934b9082657f35f0a3c91d rdf:first sg:person.0640760665.14
103 rdf:rest N1f43eb7fb1d64e829de127d7bce89c61
104 Ne8518aa05f7c4ed2b383e1267852b53b schema:name readcube_id
105 schema:value 4820e8a232ccc41d5d418b2a385030456334508cb43144ab54220998ed3158df
106 rdf:type schema:PropertyValue
107 Nebc9c490965e49eba6c49cf646b37467 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Male
109 rdf:type schema:DefinedTerm
110 Nef2cb165cb22435bab1a3a3d583c140a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Humans
112 rdf:type schema:DefinedTerm
113 Nefd38cbf903048d1ab4db6c9e60e2896 rdf:first sg:person.07437532614.03
114 rdf:rest N0eb0e6308f194a2c9471702445bfd76d
115 Nf06ba359f17b4130ae2c2f5b224c6f7c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Tomography, X-Ray Computed
117 rdf:type schema:DefinedTerm
118 Nf4026e8546124cc187b3193f77806abc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Female
120 rdf:type schema:DefinedTerm
121 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
122 schema:name Information and Computing Sciences
123 rdf:type schema:DefinedTerm
124 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
125 schema:name Artificial Intelligence and Image Processing
126 rdf:type schema:DefinedTerm
127 sg:journal.1101514 schema:issn 1434-7229
128 1619-0904
129 schema:name Journal of Artificial Organs
130 rdf:type schema:Periodical
131 sg:person.01043032720.21 schema:affiliation https://www.grid.ac/institutes/grid.136593.b
132 schema:familyName Sawa
133 schema:givenName Yoshiki
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01043032720.21
135 rdf:type schema:Person
136 sg:person.01101026741.38 schema:affiliation https://www.grid.ac/institutes/grid.416720.6
137 schema:familyName Koyama
138 schema:givenName Yasushi
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101026741.38
140 rdf:type schema:Person
141 sg:person.01131202323.04 schema:affiliation https://www.grid.ac/institutes/grid.136593.b
142 schema:familyName Toda
143 schema:givenName Koichi
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01131202323.04
145 rdf:type schema:Person
146 sg:person.01334043574.35 schema:affiliation https://www.grid.ac/institutes/grid.255464.4
147 schema:familyName Kurata
148 schema:givenName Akira
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01334043574.35
150 rdf:type schema:Person
151 sg:person.0612501765.30 schema:affiliation https://www.grid.ac/institutes/grid.136593.b
152 schema:familyName Shirakawa
153 schema:givenName Takashi
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0612501765.30
155 rdf:type schema:Person
156 sg:person.0630524420.63 schema:affiliation https://www.grid.ac/institutes/grid.261356.5
157 schema:familyName Miyoshi
158 schema:givenName Toru
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0630524420.63
160 rdf:type schema:Person
161 sg:person.0640760665.14 schema:affiliation https://www.grid.ac/institutes/grid.414976.9
162 schema:familyName Yoshitatsu
163 schema:givenName Masao
164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640760665.14
165 rdf:type schema:Person
166 sg:person.07437532614.03 schema:affiliation https://www.grid.ac/institutes/grid.416720.6
167 schema:familyName Masai
168 schema:givenName Takafumi
169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07437532614.03
170 rdf:type schema:Person
171 sg:person.0764166654.35 schema:affiliation https://www.grid.ac/institutes/grid.414976.9
172 schema:familyName Mizoguchi
173 schema:givenName Hiroki
174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0764166654.35
175 rdf:type schema:Person
176 sg:pub.10.1007/s10047-017-0955-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084023691
177 https://doi.org/10.1007/s10047-017-0955-8
178 rdf:type schema:CreativeWork
179 sg:pub.10.1007/s10439-016-1676-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040139813
180 https://doi.org/10.1007/s10439-016-1676-5
181 rdf:type schema:CreativeWork
182 sg:pub.10.1038/nrcardio.2016.170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030979554
183 https://doi.org/10.1038/nrcardio.2016.170
184 rdf:type schema:CreativeWork
185 https://app.dimensions.ai/details/publication/pub.1082012599 schema:CreativeWork
186 https://doi.org/10.1016/j.athoracsur.2014.04.094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047668688
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/j.echo.2014.12.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020319447
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1016/j.ejcts.2009.07.046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041147857
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1016/s0140-6736(86)90837-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040287180
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1016/s0735-1097(99)00498-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029607955
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1093/icvts/ivw009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043021301
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1118/1.3673773 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013505371
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1177/2150135114528721 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009411155
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1510/icvts.2007.156588 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044317102
203 rdf:type schema:CreativeWork
204 https://www.grid.ac/institutes/grid.136593.b schema:alternateName Osaka University
205 schema:name Department of Cardiovascular Surgery, Kansai Rosai Hospital, 3-1-69 Inabaso, 660-8511, Amagasaki, Hyogo, Japan
206 Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
207 rdf:type schema:Organization
208 https://www.grid.ac/institutes/grid.255464.4 schema:alternateName Ehime University
209 schema:name Department of Radiology, Ehime University Graduate School of Medicine, Ehime, Japan
210 rdf:type schema:Organization
211 https://www.grid.ac/institutes/grid.261356.5 schema:alternateName Okayama University
212 schema:name Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Okayama, Japan
213 rdf:type schema:Organization
214 https://www.grid.ac/institutes/grid.414976.9 schema:alternateName Kansai Rosai Hospital
215 schema:name Department of Cardiovascular Surgery, Kansai Rosai Hospital, 3-1-69 Inabaso, 660-8511, Amagasaki, Hyogo, Japan
216 rdf:type schema:Organization
217 https://www.grid.ac/institutes/grid.416720.6 schema:alternateName Sakurabashi Watanabe Hospital
218 schema:name Department of Cardiovascular Surgery, Sakurabashi Watanabe Hospital, Osaka, Japan
219 Department of Diagnostic Radiology and Cardiology, Sakurabashi Watanabe Hospital, Osaka, Japan
220 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...