A deep neural network and rule-based technique for fire risk identification in video frames View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02

AUTHORS

Ligang Zhang, Brijesh Verma

ABSTRACT

Automatically monitoring roadside fire risk plays a significant role in ensuring road safety by reducing potential hazards imposed to vehicle drivers and enabling effective roadside vegetation management. However, little work has been conducted in this field using video data collected by vehicle-mounted cameras. In this paper, a novel approach is proposed for roadside fire risk identification based on the biomass of grasses. Inspired by the biomass measurement method by human in grass curing, the proposed approach predicts the biomass and identifies high-risk regions using threshold-based rules based on two site-specific parameters of roadside grasses—brown grass coverage (BGC) and height (BGH). The BGC is calculated as the percentage of brown grass pixels in a sampling region, while the BGH is predicted based on the connectivity characteristics of grass stems along the vertical direction. To further reduce the false alarm rate of fire risk, we additionally incorporate and compare two deep learning techniques, including autoencoder and convolutional neural network, for refining the results. Our approach shows high performance of combining threshold-based rules with deep neural networks in classifying low and high fire risk on a roadside image dataset from video collected by the Department of Transport and Main Roads, Queensland, Australia. More... »

PAGES

187-203

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10044-018-0756-6

DOI

http://dx.doi.org/10.1007/s10044-018-0756-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1109787596


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Central Queensland University", 
          "id": "https://www.grid.ac/institutes/grid.1023.0", 
          "name": [
            "School of Engineering and Technology, Central Queensland University, Brisbane, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Ligang", 
        "id": "sg:person.010507724205.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010507724205.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Central Queensland University", 
          "id": "https://www.grid.ac/institutes/grid.1023.0", 
          "name": [
            "School of Engineering and Technology, Central Queensland University, Brisbane, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Verma", 
        "givenName": "Brijesh", 
        "id": "sg:person.0621007563.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621007563.65"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-319-26532-2_39", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002594229", 
          "https://doi.org/10.1007/978-3-319-26532-2_39"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/s140100900", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005983353"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rse.2007.07.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006590725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-15555-0_26", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006936750", 
          "https://doi.org/10.1007/978-3-642-15555-0_26"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-15555-0_26", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006936750", 
          "https://doi.org/10.1007/978-3-642-15555-0_26"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.robot.2012.07.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007720495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rse.2006.01.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008653834"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:visi.0000022288.19776.77", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009092998", 
          "https://doi.org/10.1023/b:visi.0000022288.19776.77"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/146443.146479", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010794871"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11263-007-0109-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011294820", 
          "https://doi.org/10.1007/s11263-007-0109-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patcog.2016.05.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017939106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.robot.2011.11.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024524825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01431160701736505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025156919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biombioe.2011.02.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027252734"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0042-6989(80)90065-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028999658"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0042-6989(80)90065-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028999658"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patcog.2005.12.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031468490"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2015.02.047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034951943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5772/16919", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042801116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01431160010006863", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044029375"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1011126920638", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046312359", 
          "https://doi.org/10.1023/a:1011126920638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.imavis.2006.05.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049806848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5772/17745", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050626279"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/5.726791", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061179979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/83.242353", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061239085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tgrs.2013.2265322", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061613014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tgrs.2014.2365953", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061613661"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tip.2003.812429", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061640872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2016.2572683", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061745111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0129065797000161", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062899892"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1085093208", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-981-10-4539-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085093208", 
          "https://doi.org/10.1007/978-981-10-4539-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2004.1315069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093321059"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icnc.2015.7378170", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093383744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icpr.2008.4761332", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093560504"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icise.2009.732", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093696283"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ijcnn.2014.6889778", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093717854"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iros.2010.5650430", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093989776"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccv.2005.171", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094707806"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iros.2008.4651086", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094939861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/itsc.2012.6338752", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095176776"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/robot.2007.363836", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095200618"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icit.2011.5754402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095284568"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2001.990922", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095591703"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icce.2008.4587982", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095624134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cisp.2014.7003817", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095763859"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02", 
    "datePublishedReg": "2019-02-01", 
    "description": "Automatically monitoring roadside fire risk plays a significant role in ensuring road safety by reducing potential hazards imposed to vehicle drivers and enabling effective roadside vegetation management. However, little work has been conducted in this field using video data collected by vehicle-mounted cameras. In this paper, a novel approach is proposed for roadside fire risk identification based on the biomass of grasses. Inspired by the biomass measurement method by human in grass curing, the proposed approach predicts the biomass and identifies high-risk regions using threshold-based rules based on two site-specific parameters of roadside grasses\u2014brown grass coverage (BGC) and height (BGH). The BGC is calculated as the percentage of brown grass pixels in a sampling region, while the BGH is predicted based on the connectivity characteristics of grass stems along the vertical direction. To further reduce the false alarm rate of fire risk, we additionally incorporate and compare two deep learning techniques, including autoencoder and convolutional neural network, for refining the results. Our approach shows high performance of combining threshold-based rules with deep neural networks in classifying low and high fire risk on a roadside image dataset from video collected by the Department of Transport and Main Roads, Queensland, Australia.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10044-018-0756-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5127703", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1041985", 
        "issn": [
          "1433-7541", 
          "1433-755X"
        ], 
        "name": "Pattern Analysis and Applications", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "22"
      }
    ], 
    "name": "A deep neural network and rule-based technique for fire risk identification in video frames", 
    "pagination": "187-203", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0fc9ec4a677a9c8d59c06f684922732e19b1909e10b331f7239ee429768d9e72"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10044-018-0756-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1109787596"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10044-018-0756-6", 
      "https://app.dimensions.ai/details/publication/pub.1109787596"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113640_00000005.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10044-018-0756-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10044-018-0756-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10044-018-0756-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10044-018-0756-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10044-018-0756-6'


 

This table displays all metadata directly associated to this object as RDF triples.

207 TRIPLES      21 PREDICATES      71 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10044-018-0756-6 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N881de33e55cf49648969eb5e2de08241
4 schema:citation sg:pub.10.1007/978-3-319-26532-2_39
5 sg:pub.10.1007/978-3-642-15555-0_26
6 sg:pub.10.1007/978-981-10-4539-4
7 sg:pub.10.1007/s11263-007-0109-1
8 sg:pub.10.1023/a:1011126920638
9 sg:pub.10.1023/b:visi.0000022288.19776.77
10 https://app.dimensions.ai/details/publication/pub.1085093208
11 https://doi.org/10.1016/0042-6989(80)90065-6
12 https://doi.org/10.1016/j.biombioe.2011.02.028
13 https://doi.org/10.1016/j.eswa.2015.02.047
14 https://doi.org/10.1016/j.imavis.2006.05.015
15 https://doi.org/10.1016/j.patcog.2005.12.003
16 https://doi.org/10.1016/j.patcog.2016.05.013
17 https://doi.org/10.1016/j.robot.2011.11.012
18 https://doi.org/10.1016/j.robot.2012.07.022
19 https://doi.org/10.1016/j.rse.2006.01.005
20 https://doi.org/10.1016/j.rse.2007.07.010
21 https://doi.org/10.1080/01431160010006863
22 https://doi.org/10.1080/01431160701736505
23 https://doi.org/10.1109/5.726791
24 https://doi.org/10.1109/83.242353
25 https://doi.org/10.1109/cisp.2014.7003817
26 https://doi.org/10.1109/cvpr.2001.990922
27 https://doi.org/10.1109/cvpr.2004.1315069
28 https://doi.org/10.1109/icce.2008.4587982
29 https://doi.org/10.1109/iccv.2005.171
30 https://doi.org/10.1109/icise.2009.732
31 https://doi.org/10.1109/icit.2011.5754402
32 https://doi.org/10.1109/icnc.2015.7378170
33 https://doi.org/10.1109/icpr.2008.4761332
34 https://doi.org/10.1109/ijcnn.2014.6889778
35 https://doi.org/10.1109/iros.2008.4651086
36 https://doi.org/10.1109/iros.2010.5650430
37 https://doi.org/10.1109/itsc.2012.6338752
38 https://doi.org/10.1109/robot.2007.363836
39 https://doi.org/10.1109/tgrs.2013.2265322
40 https://doi.org/10.1109/tgrs.2014.2365953
41 https://doi.org/10.1109/tip.2003.812429
42 https://doi.org/10.1109/tpami.2016.2572683
43 https://doi.org/10.1142/s0129065797000161
44 https://doi.org/10.1145/146443.146479
45 https://doi.org/10.3390/s140100900
46 https://doi.org/10.5772/16919
47 https://doi.org/10.5772/17745
48 schema:datePublished 2019-02
49 schema:datePublishedReg 2019-02-01
50 schema:description Automatically monitoring roadside fire risk plays a significant role in ensuring road safety by reducing potential hazards imposed to vehicle drivers and enabling effective roadside vegetation management. However, little work has been conducted in this field using video data collected by vehicle-mounted cameras. In this paper, a novel approach is proposed for roadside fire risk identification based on the biomass of grasses. Inspired by the biomass measurement method by human in grass curing, the proposed approach predicts the biomass and identifies high-risk regions using threshold-based rules based on two site-specific parameters of roadside grasses—brown grass coverage (BGC) and height (BGH). The BGC is calculated as the percentage of brown grass pixels in a sampling region, while the BGH is predicted based on the connectivity characteristics of grass stems along the vertical direction. To further reduce the false alarm rate of fire risk, we additionally incorporate and compare two deep learning techniques, including autoencoder and convolutional neural network, for refining the results. Our approach shows high performance of combining threshold-based rules with deep neural networks in classifying low and high fire risk on a roadside image dataset from video collected by the Department of Transport and Main Roads, Queensland, Australia.
51 schema:genre research_article
52 schema:inLanguage en
53 schema:isAccessibleForFree false
54 schema:isPartOf N746c7ab1caa243bb9b6050dea1591cbe
55 Ne23eb37b5d4242269be2f485fea627a7
56 sg:journal.1041985
57 schema:name A deep neural network and rule-based technique for fire risk identification in video frames
58 schema:pagination 187-203
59 schema:productId N547fc7768e284e948e61c3241113b97a
60 N5660c076c5444d4297cfc855c147c310
61 N69f1be0cef5244e2a27fe014576f6eb4
62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109787596
63 https://doi.org/10.1007/s10044-018-0756-6
64 schema:sdDatePublished 2019-04-11T10:28
65 schema:sdLicense https://scigraph.springernature.com/explorer/license/
66 schema:sdPublisher N066399500b58400bb7bf50fc15c52166
67 schema:url https://link.springer.com/10.1007%2Fs10044-018-0756-6
68 sgo:license sg:explorer/license/
69 sgo:sdDataset articles
70 rdf:type schema:ScholarlyArticle
71 N066399500b58400bb7bf50fc15c52166 schema:name Springer Nature - SN SciGraph project
72 rdf:type schema:Organization
73 N547fc7768e284e948e61c3241113b97a schema:name doi
74 schema:value 10.1007/s10044-018-0756-6
75 rdf:type schema:PropertyValue
76 N5660c076c5444d4297cfc855c147c310 schema:name dimensions_id
77 schema:value pub.1109787596
78 rdf:type schema:PropertyValue
79 N69f1be0cef5244e2a27fe014576f6eb4 schema:name readcube_id
80 schema:value 0fc9ec4a677a9c8d59c06f684922732e19b1909e10b331f7239ee429768d9e72
81 rdf:type schema:PropertyValue
82 N746c7ab1caa243bb9b6050dea1591cbe schema:volumeNumber 22
83 rdf:type schema:PublicationVolume
84 N85eacde6997440f3afcbb1e0c350f3f3 rdf:first sg:person.0621007563.65
85 rdf:rest rdf:nil
86 N881de33e55cf49648969eb5e2de08241 rdf:first sg:person.010507724205.40
87 rdf:rest N85eacde6997440f3afcbb1e0c350f3f3
88 Ne23eb37b5d4242269be2f485fea627a7 schema:issueNumber 1
89 rdf:type schema:PublicationIssue
90 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
91 schema:name Information and Computing Sciences
92 rdf:type schema:DefinedTerm
93 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
94 schema:name Artificial Intelligence and Image Processing
95 rdf:type schema:DefinedTerm
96 sg:grant.5127703 http://pending.schema.org/fundedItem sg:pub.10.1007/s10044-018-0756-6
97 rdf:type schema:MonetaryGrant
98 sg:journal.1041985 schema:issn 1433-7541
99 1433-755X
100 schema:name Pattern Analysis and Applications
101 rdf:type schema:Periodical
102 sg:person.010507724205.40 schema:affiliation https://www.grid.ac/institutes/grid.1023.0
103 schema:familyName Zhang
104 schema:givenName Ligang
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010507724205.40
106 rdf:type schema:Person
107 sg:person.0621007563.65 schema:affiliation https://www.grid.ac/institutes/grid.1023.0
108 schema:familyName Verma
109 schema:givenName Brijesh
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621007563.65
111 rdf:type schema:Person
112 sg:pub.10.1007/978-3-319-26532-2_39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002594229
113 https://doi.org/10.1007/978-3-319-26532-2_39
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/978-3-642-15555-0_26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006936750
116 https://doi.org/10.1007/978-3-642-15555-0_26
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/978-981-10-4539-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085093208
119 https://doi.org/10.1007/978-981-10-4539-4
120 rdf:type schema:CreativeWork
121 sg:pub.10.1007/s11263-007-0109-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011294820
122 https://doi.org/10.1007/s11263-007-0109-1
123 rdf:type schema:CreativeWork
124 sg:pub.10.1023/a:1011126920638 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046312359
125 https://doi.org/10.1023/a:1011126920638
126 rdf:type schema:CreativeWork
127 sg:pub.10.1023/b:visi.0000022288.19776.77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009092998
128 https://doi.org/10.1023/b:visi.0000022288.19776.77
129 rdf:type schema:CreativeWork
130 https://app.dimensions.ai/details/publication/pub.1085093208 schema:CreativeWork
131 https://doi.org/10.1016/0042-6989(80)90065-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028999658
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.biombioe.2011.02.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027252734
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.eswa.2015.02.047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034951943
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.imavis.2006.05.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049806848
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.patcog.2005.12.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031468490
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.patcog.2016.05.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017939106
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.robot.2011.11.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024524825
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.robot.2012.07.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007720495
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.rse.2006.01.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008653834
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.rse.2007.07.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006590725
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1080/01431160010006863 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044029375
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1080/01431160701736505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025156919
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1109/5.726791 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061179979
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1109/83.242353 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061239085
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1109/cisp.2014.7003817 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095763859
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1109/cvpr.2001.990922 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095591703
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1109/cvpr.2004.1315069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093321059
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1109/icce.2008.4587982 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095624134
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1109/iccv.2005.171 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094707806
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1109/icise.2009.732 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093696283
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1109/icit.2011.5754402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095284568
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1109/icnc.2015.7378170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093383744
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1109/icpr.2008.4761332 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093560504
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1109/ijcnn.2014.6889778 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093717854
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1109/iros.2008.4651086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094939861
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1109/iros.2010.5650430 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093989776
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1109/itsc.2012.6338752 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095176776
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1109/robot.2007.363836 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095200618
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1109/tgrs.2013.2265322 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061613014
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1109/tgrs.2014.2365953 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061613661
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1109/tip.2003.812429 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061640872
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1109/tpami.2016.2572683 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061745111
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1142/s0129065797000161 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062899892
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1145/146443.146479 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010794871
198 rdf:type schema:CreativeWork
199 https://doi.org/10.3390/s140100900 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005983353
200 rdf:type schema:CreativeWork
201 https://doi.org/10.5772/16919 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042801116
202 rdf:type schema:CreativeWork
203 https://doi.org/10.5772/17745 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050626279
204 rdf:type schema:CreativeWork
205 https://www.grid.ac/institutes/grid.1023.0 schema:alternateName Central Queensland University
206 schema:name School of Engineering and Technology, Central Queensland University, Brisbane, Australia
207 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...