Double-fold localized multiple matrix learning machine with Universum View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-11

AUTHORS

Changming Zhu

ABSTRACT

Matrix learning, multiple-view learning, Universum learning, and local learning are four hot spots of present research. Matrix learning aims to design feasible machines to process matrix patterns directly. Multiple-view learning takes pattern information from multiple aspects, i.e., multiple-view information into account. Universum learning can reflect priori knowledge about application domain and improve classification performances. A good local learning approach is important to the finding of local structures and pattern information. Our previous proposed learning machine, double-fold localized multiple matrix learning machine is a one with multiple-view information, local structures, and matrix learning. But this machine does not take Universum learning into account. Thus, this paper proposes a double-fold localized multiple matrix learning machine with Universum (Uni-DLMMLM) so as to improve the performance of a learning machine. Experimental results have validated that Uni-DLMMLM (1) makes full use of the domain knowledge of whole data distribution as well as inherits the advantages of matrix learning; (2) combines Universum learning with matrix learning so as to capture more global knowledge; (3) has a good ability to process different kinds of data sets; (4) has a superior classification performance and leads to a low empirical generation risk bound. More... »

PAGES

1091-1118

References to SciGraph publications

  • 2002-07. Model Selection and Error Estimation in MACHINE LEARNING
  • 2000. Rademacher Processes and Bounding the Risk of Function Learning in HIGH DIMENSIONAL PROBABILITY II
  • 2011-03. Single-image super-resolution via local learning in INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS
  • 2007-08. New Least Squares Support Vector Machines Based on Matrix Patterns in NEURAL PROCESSING LETTERS
  • 2013-12. Multiple empirical kernel learning based on local information in NEURAL COMPUTING AND APPLICATIONS
  • 2005-11. Generalized Low Rank Approximations of Matrices in MACHINE LEARNING
  • 2004-07. A decision based one-against-one method for multi-class support vector machine in PATTERN ANALYSIS AND APPLICATIONS
  • 2008. View-Invariant Pose Recognition Using Multilinear Analysis and the Universum in ADVANCES IN VISUAL COMPUTING
  • 2011. One-Class Support Vector Machines Based on Matrix Patterns in PROCEEDINGS OF THE 2011, INTERNATIONAL CONFERENCE ON INFORMATICS, CYBERNETICS, AND COMPUTER ENGINEERING (ICCE2011) NOVEMBER 19–20, 2011, MELBOURNE, AUSTRALIA
  • 2009. Empirical Study of the Universum SVM Learning for High-Dimensional Data in ARTIFICIAL NEURAL NETWORKS – ICANN 2009
  • 2014-12. Self-Universum support vector machine in PERSONAL AND UBIQUITOUS COMPUTING
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10044-016-0548-9

    DOI

    http://dx.doi.org/10.1007/s10044-016-0548-9

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1002323753


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "1550 Haigang Avenue, Pudong New Area, Shanghai, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhu", 
            "givenName": "Changming", 
            "id": "sg:person.012733211463.94", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012733211463.94"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.patrec.2004.09.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000334034"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ins.2013.06.036", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000900064"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.knosys.2014.04.012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001731434"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-25188-7_27", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004078977", 
              "https://doi.org/10.1007/978-3-642-25188-7_27"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00521-012-1161-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005347190", 
              "https://doi.org/10.1007/s00521-012-1161-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-04274-4_96", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014964323", 
              "https://doi.org/10.1007/978-3-642-04274-4_96"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11063-007-9041-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015281528", 
              "https://doi.org/10.1007/s11063-007-9041-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.patrec.2004.10.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015586259"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.patcog.2012.12.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019979836"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-89646-3_57", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020031734", 
              "https://doi.org/10.1007/978-3-540-89646-3_57"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.patcog.2011.04.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022211110"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4612-1358-1_29", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023458775", 
              "https://doi.org/10.1007/978-1-4612-1358-1_29"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4612-1358-1_29", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023458775", 
              "https://doi.org/10.1007/978-1-4612-1358-1_29"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10994-005-3561-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023493943", 
              "https://doi.org/10.1007/s10994-005-3561-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10994-005-3561-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023493943", 
              "https://doi.org/10.1007/s10994-005-3561-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/2009916.2010033", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025023291"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1013999503812", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025760069", 
              "https://doi.org/10.1023/a:1013999503812"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.patcog.2006.09.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031709851"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.patcog.2014.12.016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032192060"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13042-011-0011-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034737666", 
              "https://doi.org/10.1007/s13042-011-0011-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0167-8655(03)00054-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038514557"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0167-8655(03)00054-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038514557"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neucom.2012.05.027", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039917381"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ins.2012.06.026", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049030256"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.knosys.2014.07.019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049124434"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ins.2014.10.024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049167798"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00779-014-0797-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049393980", 
              "https://doi.org/10.1007/s00779-014-0797-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10044-004-0213-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051290974", 
              "https://doi.org/10.1007/s10044-004-0213-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ins.2009.06.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051930592"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1049/el.2012.2506", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056753476"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/18.930926", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061101702"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/18.971753", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061101834"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/72.991427", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061219719"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tkde.2015.2445757", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061663094"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tpami.2004.1261097", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061742645"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tpami.2011.240", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061744123"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tpami.2015.2417578", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061744857"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cvpr.2005.290", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093772391"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iccv.2013.87", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094318805"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-11", 
        "datePublishedReg": "2017-11-01", 
        "description": "Matrix learning, multiple-view learning, Universum learning, and local learning are four hot spots of present research. Matrix learning aims to design feasible machines to process matrix patterns directly. Multiple-view learning takes pattern information from multiple aspects, i.e., multiple-view information into account. Universum learning can reflect priori knowledge about application domain and improve classification performances. A good local learning approach is important to the finding of local structures and pattern information. Our previous proposed learning machine, double-fold localized multiple matrix learning machine is a one with multiple-view information, local structures, and matrix learning. But this machine does not take Universum learning into account. Thus, this paper proposes a double-fold localized multiple matrix learning machine with Universum (Uni-DLMMLM) so as to improve the performance of a learning machine. Experimental results have validated that Uni-DLMMLM (1) makes full use of the domain knowledge of whole data distribution as well as inherits the advantages of matrix learning; (2) combines Universum learning with matrix learning so as to capture more global knowledge; (3) has a good ability to process different kinds of data sets; (4) has a superior classification performance and leads to a low empirical generation risk bound.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10044-016-0548-9", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.7188812", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.6979589", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1041985", 
            "issn": [
              "1433-7541", 
              "1433-755X"
            ], 
            "name": "Pattern Analysis and Applications", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "20"
          }
        ], 
        "name": "Double-fold localized multiple matrix learning machine with Universum", 
        "pagination": "1091-1118", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "0b106e1bd0da79c5916e07253bd705de1857f3def8ec04d7fdd3382fc968c1f5"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10044-016-0548-9"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1002323753"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10044-016-0548-9", 
          "https://app.dimensions.ai/details/publication/pub.1002323753"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T12:21", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87079_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs10044-016-0548-9"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10044-016-0548-9'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10044-016-0548-9'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10044-016-0548-9'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10044-016-0548-9'


     

    This table displays all metadata directly associated to this object as RDF triples.

    183 TRIPLES      21 PREDICATES      63 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10044-016-0548-9 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author Ne7955e1b74094996a883d33e58550547
    4 schema:citation sg:pub.10.1007/978-1-4612-1358-1_29
    5 sg:pub.10.1007/978-3-540-89646-3_57
    6 sg:pub.10.1007/978-3-642-04274-4_96
    7 sg:pub.10.1007/978-3-642-25188-7_27
    8 sg:pub.10.1007/s00521-012-1161-5
    9 sg:pub.10.1007/s00779-014-0797-9
    10 sg:pub.10.1007/s10044-004-0213-6
    11 sg:pub.10.1007/s10994-005-3561-6
    12 sg:pub.10.1007/s11063-007-9041-1
    13 sg:pub.10.1007/s13042-011-0011-6
    14 sg:pub.10.1023/a:1013999503812
    15 https://doi.org/10.1016/j.ins.2009.06.001
    16 https://doi.org/10.1016/j.ins.2012.06.026
    17 https://doi.org/10.1016/j.ins.2013.06.036
    18 https://doi.org/10.1016/j.ins.2014.10.024
    19 https://doi.org/10.1016/j.knosys.2014.04.012
    20 https://doi.org/10.1016/j.knosys.2014.07.019
    21 https://doi.org/10.1016/j.neucom.2012.05.027
    22 https://doi.org/10.1016/j.patcog.2006.09.001
    23 https://doi.org/10.1016/j.patcog.2011.04.002
    24 https://doi.org/10.1016/j.patcog.2012.12.003
    25 https://doi.org/10.1016/j.patcog.2014.12.016
    26 https://doi.org/10.1016/j.patrec.2004.09.007
    27 https://doi.org/10.1016/j.patrec.2004.10.009
    28 https://doi.org/10.1016/s0167-8655(03)00054-0
    29 https://doi.org/10.1049/el.2012.2506
    30 https://doi.org/10.1109/18.930926
    31 https://doi.org/10.1109/18.971753
    32 https://doi.org/10.1109/72.991427
    33 https://doi.org/10.1109/cvpr.2005.290
    34 https://doi.org/10.1109/iccv.2013.87
    35 https://doi.org/10.1109/tkde.2015.2445757
    36 https://doi.org/10.1109/tpami.2004.1261097
    37 https://doi.org/10.1109/tpami.2011.240
    38 https://doi.org/10.1109/tpami.2015.2417578
    39 https://doi.org/10.1145/2009916.2010033
    40 schema:datePublished 2017-11
    41 schema:datePublishedReg 2017-11-01
    42 schema:description Matrix learning, multiple-view learning, Universum learning, and local learning are four hot spots of present research. Matrix learning aims to design feasible machines to process matrix patterns directly. Multiple-view learning takes pattern information from multiple aspects, i.e., multiple-view information into account. Universum learning can reflect priori knowledge about application domain and improve classification performances. A good local learning approach is important to the finding of local structures and pattern information. Our previous proposed learning machine, double-fold localized multiple matrix learning machine is a one with multiple-view information, local structures, and matrix learning. But this machine does not take Universum learning into account. Thus, this paper proposes a double-fold localized multiple matrix learning machine with Universum (Uni-DLMMLM) so as to improve the performance of a learning machine. Experimental results have validated that Uni-DLMMLM (1) makes full use of the domain knowledge of whole data distribution as well as inherits the advantages of matrix learning; (2) combines Universum learning with matrix learning so as to capture more global knowledge; (3) has a good ability to process different kinds of data sets; (4) has a superior classification performance and leads to a low empirical generation risk bound.
    43 schema:genre research_article
    44 schema:inLanguage en
    45 schema:isAccessibleForFree false
    46 schema:isPartOf N871a8f763c384a69b3cf19094b080789
    47 Nc404a8233a1242998af53667b8e9d6a4
    48 sg:journal.1041985
    49 schema:name Double-fold localized multiple matrix learning machine with Universum
    50 schema:pagination 1091-1118
    51 schema:productId N6738debc67a64fb995e22d79a22f6e20
    52 N9e5f1d05bb7e4d548e423e013020fb45
    53 Na90554c540dd49eeb4f1320991380f32
    54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002323753
    55 https://doi.org/10.1007/s10044-016-0548-9
    56 schema:sdDatePublished 2019-04-11T12:21
    57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    58 schema:sdPublisher Ne12eb12395b242b787ad322d1966a842
    59 schema:url https://link.springer.com/10.1007%2Fs10044-016-0548-9
    60 sgo:license sg:explorer/license/
    61 sgo:sdDataset articles
    62 rdf:type schema:ScholarlyArticle
    63 N6738debc67a64fb995e22d79a22f6e20 schema:name readcube_id
    64 schema:value 0b106e1bd0da79c5916e07253bd705de1857f3def8ec04d7fdd3382fc968c1f5
    65 rdf:type schema:PropertyValue
    66 N871a8f763c384a69b3cf19094b080789 schema:issueNumber 4
    67 rdf:type schema:PublicationIssue
    68 N9e5f1d05bb7e4d548e423e013020fb45 schema:name dimensions_id
    69 schema:value pub.1002323753
    70 rdf:type schema:PropertyValue
    71 Na19ae25b38c348f98fd47eddb6a191c4 schema:name 1550 Haigang Avenue, Pudong New Area, Shanghai, China
    72 rdf:type schema:Organization
    73 Na90554c540dd49eeb4f1320991380f32 schema:name doi
    74 schema:value 10.1007/s10044-016-0548-9
    75 rdf:type schema:PropertyValue
    76 Nc404a8233a1242998af53667b8e9d6a4 schema:volumeNumber 20
    77 rdf:type schema:PublicationVolume
    78 Ne12eb12395b242b787ad322d1966a842 schema:name Springer Nature - SN SciGraph project
    79 rdf:type schema:Organization
    80 Ne7955e1b74094996a883d33e58550547 rdf:first sg:person.012733211463.94
    81 rdf:rest rdf:nil
    82 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    83 schema:name Information and Computing Sciences
    84 rdf:type schema:DefinedTerm
    85 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    86 schema:name Artificial Intelligence and Image Processing
    87 rdf:type schema:DefinedTerm
    88 sg:grant.6979589 http://pending.schema.org/fundedItem sg:pub.10.1007/s10044-016-0548-9
    89 rdf:type schema:MonetaryGrant
    90 sg:grant.7188812 http://pending.schema.org/fundedItem sg:pub.10.1007/s10044-016-0548-9
    91 rdf:type schema:MonetaryGrant
    92 sg:journal.1041985 schema:issn 1433-7541
    93 1433-755X
    94 schema:name Pattern Analysis and Applications
    95 rdf:type schema:Periodical
    96 sg:person.012733211463.94 schema:affiliation Na19ae25b38c348f98fd47eddb6a191c4
    97 schema:familyName Zhu
    98 schema:givenName Changming
    99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012733211463.94
    100 rdf:type schema:Person
    101 sg:pub.10.1007/978-1-4612-1358-1_29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023458775
    102 https://doi.org/10.1007/978-1-4612-1358-1_29
    103 rdf:type schema:CreativeWork
    104 sg:pub.10.1007/978-3-540-89646-3_57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020031734
    105 https://doi.org/10.1007/978-3-540-89646-3_57
    106 rdf:type schema:CreativeWork
    107 sg:pub.10.1007/978-3-642-04274-4_96 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014964323
    108 https://doi.org/10.1007/978-3-642-04274-4_96
    109 rdf:type schema:CreativeWork
    110 sg:pub.10.1007/978-3-642-25188-7_27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004078977
    111 https://doi.org/10.1007/978-3-642-25188-7_27
    112 rdf:type schema:CreativeWork
    113 sg:pub.10.1007/s00521-012-1161-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005347190
    114 https://doi.org/10.1007/s00521-012-1161-5
    115 rdf:type schema:CreativeWork
    116 sg:pub.10.1007/s00779-014-0797-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049393980
    117 https://doi.org/10.1007/s00779-014-0797-9
    118 rdf:type schema:CreativeWork
    119 sg:pub.10.1007/s10044-004-0213-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051290974
    120 https://doi.org/10.1007/s10044-004-0213-6
    121 rdf:type schema:CreativeWork
    122 sg:pub.10.1007/s10994-005-3561-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023493943
    123 https://doi.org/10.1007/s10994-005-3561-6
    124 rdf:type schema:CreativeWork
    125 sg:pub.10.1007/s11063-007-9041-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015281528
    126 https://doi.org/10.1007/s11063-007-9041-1
    127 rdf:type schema:CreativeWork
    128 sg:pub.10.1007/s13042-011-0011-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034737666
    129 https://doi.org/10.1007/s13042-011-0011-6
    130 rdf:type schema:CreativeWork
    131 sg:pub.10.1023/a:1013999503812 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025760069
    132 https://doi.org/10.1023/a:1013999503812
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1016/j.ins.2009.06.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051930592
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1016/j.ins.2012.06.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049030256
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1016/j.ins.2013.06.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000900064
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1016/j.ins.2014.10.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049167798
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1016/j.knosys.2014.04.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001731434
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1016/j.knosys.2014.07.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049124434
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1016/j.neucom.2012.05.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039917381
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1016/j.patcog.2006.09.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031709851
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1016/j.patcog.2011.04.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022211110
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1016/j.patcog.2012.12.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019979836
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1016/j.patcog.2014.12.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032192060
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1016/j.patrec.2004.09.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000334034
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1016/j.patrec.2004.10.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015586259
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1016/s0167-8655(03)00054-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038514557
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1049/el.2012.2506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056753476
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1109/18.930926 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061101702
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1109/18.971753 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061101834
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.1109/72.991427 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061219719
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1109/cvpr.2005.290 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093772391
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.1109/iccv.2013.87 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094318805
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.1109/tkde.2015.2445757 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061663094
    175 rdf:type schema:CreativeWork
    176 https://doi.org/10.1109/tpami.2004.1261097 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061742645
    177 rdf:type schema:CreativeWork
    178 https://doi.org/10.1109/tpami.2011.240 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061744123
    179 rdf:type schema:CreativeWork
    180 https://doi.org/10.1109/tpami.2015.2417578 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061744857
    181 rdf:type schema:CreativeWork
    182 https://doi.org/10.1145/2009916.2010033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025023291
    183 rdf:type schema:CreativeWork
     




    Preview window. Press ESC to close (or click here)


    ...