Concealed weapon detection and visualization in a synthesized image View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2006-02

AUTHORS

Zheng Liu, Zhiyun Xue, Rick S. Blum, Robert Laganière

ABSTRACT

Images acquired by heterogeneous image sensors may provide complementary information about the scene, for instance, the visual image can provide personal identification information like the facial pattern while the infrared (IR) or millimeter wave image can detect the suspicious regions of concealed weapons. Usually, a technique, namely multiresolution pixel-level image fusion is applied to integrate the information from multi-sensor images. However, when the images are significantly different, the performance of the multiresolution fusion algorithms is not always satisfactory. In this study, a new strategy consisting of two steps is proposed. The first step is to use an unsupervised fuzzy k-means clustering to detect the concealed weapon from the IR image. The detected region is embedded in the visual image in the second step and this process is implemented with a multiresolution mosaic technique. Therefore, the synthesized image retains the quality comparable to the visual image while the region of the concealed weapon is highlighted and enhanced. The experimental results indicate the efficiency of the proposed approach. More... »

PAGES

375

References to SciGraph publications

  • 1993. Multisensor Fusion for Computer Vision in NONE
  • 2001. Wavelets for Image Fusion in WAVELETS IN SIGNAL AND IMAGE ANALYSIS
  • 2003. A Distributed Sensor Network for Video Surveillance of Outdoors in MULTISENSOR SURVEILLANCE SYSTEMS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10044-005-0020-8

    DOI

    http://dx.doi.org/10.1007/s10044-005-0020-8

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1011591987


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Ottawa", 
              "id": "https://www.grid.ac/institutes/grid.28046.38", 
              "name": [
                "School of Information Technology and Engineering Faulty of Engineering, University of Ottawa, SITE-5025, 800 King Edward Ave, P.O. Box 450 STN A, K1N 6N5, Ottawa, ON, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liu", 
            "givenName": "Zheng", 
            "id": "sg:person.010045203007.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010045203007.52"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Lehigh University", 
              "id": "https://www.grid.ac/institutes/grid.259029.5", 
              "name": [
                "Signal Processing and Communications Research Lab, Department of Electrical and Computer Engineering, Lehigh University, 19 Memorial Drive West, 18015-3084, Bethlehem, PA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Xue", 
            "givenName": "Zhiyun", 
            "id": "sg:person.016361056553.65", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016361056553.65"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Lehigh University", 
              "id": "https://www.grid.ac/institutes/grid.259029.5", 
              "name": [
                "Signal Processing and Communications Research Lab, Department of Electrical and Computer Engineering, Lehigh University, 19 Memorial Drive West, 18015-3084, Bethlehem, PA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Blum", 
            "givenName": "Rick S.", 
            "id": "sg:person.013767557521.40", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013767557521.40"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Ottawa", 
              "id": "https://www.grid.ac/institutes/grid.28046.38", 
              "name": [
                "School of Information Technology and Engineering Faulty of Engineering, University of Ottawa, SITE-5025, 800 King Edward Ave, P.O. Box 450 STN A, K1N 6N5, Ottawa, ON, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lagani\u00e8re", 
            "givenName": "Robert", 
            "id": "sg:person.01144533722.06", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01144533722.06"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1117/12.280804", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006291022"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-02957-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012202380", 
              "https://doi.org/10.1007/978-3-662-02957-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-02957-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012202380", 
              "https://doi.org/10.1007/978-3-662-02957-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1117/1.1303728", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018817611"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1117/12.327135", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020225215"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1566-2535(03)00046-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024362114"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1566-2535(03)00046-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024362114"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1117/12.267176", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024857270"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/014311698215748", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029457803"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/gmip.1995.1022", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031786795"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1117/12.213617", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032381531"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1117/12.56155", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036266144"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4615-0371-2_1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037194893", 
              "https://doi.org/10.1007/978-1-4615-0371-2_1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0167-8655(89)90003-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039470457"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0167-8655(89)90003-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039470457"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-015-9715-9_8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041849569", 
              "https://doi.org/10.1007/978-94-015-9715-9_8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tsmc.1979.4310076", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042805607"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0167-8655(01)00047-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049634412"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1049/ip-vis:19941184", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056860324"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1049/ip-vis:20020612", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056860823"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/18.119725", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061098596"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/19.872934", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061104549"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/30.555800", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061151578"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/34.85677", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061157090"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/36.602543", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061161654"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/91.493905", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061247770"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/maes.2003.1193712", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061380718"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/mcg.2004.1255805", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061391298"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/msp.2005.1406480", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061422311"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tpami.2002.1114856", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061742458"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iccv.1993.378222", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086369269"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icip.1998.723598", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094425037"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icip.1995.537627", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094515478"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iccv.1999.791228", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094644818"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icip.1995.537667", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094903731"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icip.1999.817168", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094926620"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icif.2003.177504", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095039863"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/acssc.1998.750934", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095084968"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icip.1995.537623", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095241165"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icip.1999.817171", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095271616"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icif.2002.1020949", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095363644"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icimw.2000.893022", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095400916"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icip.1997.632093", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095610063"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icip.2002.1038073", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095823727"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2006-02", 
        "datePublishedReg": "2006-02-01", 
        "description": "Images acquired by heterogeneous image sensors may provide complementary information about the scene, for instance, the visual image can provide personal identification information like the facial pattern while the infrared (IR) or millimeter wave image can detect the suspicious regions of concealed weapons. Usually, a technique, namely multiresolution pixel-level image fusion is applied to integrate the information from multi-sensor images. However, when the images are significantly different, the performance of the multiresolution fusion algorithms is not always satisfactory. In this study, a new strategy consisting of two steps is proposed. The first step is to use an unsupervised fuzzy k-means clustering to detect the concealed weapon from the IR image. The detected region is embedded in the visual image in the second step and this process is implemented with a multiresolution mosaic technique. Therefore, the synthesized image retains the quality comparable to the visual image while the region of the concealed weapon is highlighted and enhanced. The experimental results indicate the efficiency of the proposed approach.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10044-005-0020-8", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1041985", 
            "issn": [
              "1433-7541", 
              "1433-755X"
            ], 
            "name": "Pattern Analysis and Applications", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "8"
          }
        ], 
        "name": "Concealed weapon detection and visualization in a synthesized image", 
        "pagination": "375", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "373ac3f243db2684a84c6827eedc821e6fc113a53516e0b851d094952571a552"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10044-005-0020-8"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1011591987"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10044-005-0020-8", 
          "https://app.dimensions.ai/details/publication/pub.1011591987"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T12:40", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70049_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/s10044-005-0020-8"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10044-005-0020-8'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10044-005-0020-8'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10044-005-0020-8'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10044-005-0020-8'


     

    This table displays all metadata directly associated to this object as RDF triples.

    211 TRIPLES      21 PREDICATES      68 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10044-005-0020-8 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N8b9ae06c591a49f994d2fe614e5670d1
    4 schema:citation sg:pub.10.1007/978-1-4615-0371-2_1
    5 sg:pub.10.1007/978-3-662-02957-2
    6 sg:pub.10.1007/978-94-015-9715-9_8
    7 https://doi.org/10.1006/gmip.1995.1022
    8 https://doi.org/10.1016/0167-8655(89)90003-2
    9 https://doi.org/10.1016/s0167-8655(01)00047-2
    10 https://doi.org/10.1016/s1566-2535(03)00046-0
    11 https://doi.org/10.1049/ip-vis:19941184
    12 https://doi.org/10.1049/ip-vis:20020612
    13 https://doi.org/10.1080/014311698215748
    14 https://doi.org/10.1109/18.119725
    15 https://doi.org/10.1109/19.872934
    16 https://doi.org/10.1109/30.555800
    17 https://doi.org/10.1109/34.85677
    18 https://doi.org/10.1109/36.602543
    19 https://doi.org/10.1109/91.493905
    20 https://doi.org/10.1109/acssc.1998.750934
    21 https://doi.org/10.1109/iccv.1993.378222
    22 https://doi.org/10.1109/iccv.1999.791228
    23 https://doi.org/10.1109/icif.2002.1020949
    24 https://doi.org/10.1109/icif.2003.177504
    25 https://doi.org/10.1109/icimw.2000.893022
    26 https://doi.org/10.1109/icip.1995.537623
    27 https://doi.org/10.1109/icip.1995.537627
    28 https://doi.org/10.1109/icip.1995.537667
    29 https://doi.org/10.1109/icip.1997.632093
    30 https://doi.org/10.1109/icip.1998.723598
    31 https://doi.org/10.1109/icip.1999.817168
    32 https://doi.org/10.1109/icip.1999.817171
    33 https://doi.org/10.1109/icip.2002.1038073
    34 https://doi.org/10.1109/maes.2003.1193712
    35 https://doi.org/10.1109/mcg.2004.1255805
    36 https://doi.org/10.1109/msp.2005.1406480
    37 https://doi.org/10.1109/tpami.2002.1114856
    38 https://doi.org/10.1109/tsmc.1979.4310076
    39 https://doi.org/10.1117/1.1303728
    40 https://doi.org/10.1117/12.213617
    41 https://doi.org/10.1117/12.267176
    42 https://doi.org/10.1117/12.280804
    43 https://doi.org/10.1117/12.327135
    44 https://doi.org/10.1117/12.56155
    45 schema:datePublished 2006-02
    46 schema:datePublishedReg 2006-02-01
    47 schema:description Images acquired by heterogeneous image sensors may provide complementary information about the scene, for instance, the visual image can provide personal identification information like the facial pattern while the infrared (IR) or millimeter wave image can detect the suspicious regions of concealed weapons. Usually, a technique, namely multiresolution pixel-level image fusion is applied to integrate the information from multi-sensor images. However, when the images are significantly different, the performance of the multiresolution fusion algorithms is not always satisfactory. In this study, a new strategy consisting of two steps is proposed. The first step is to use an unsupervised fuzzy k-means clustering to detect the concealed weapon from the IR image. The detected region is embedded in the visual image in the second step and this process is implemented with a multiresolution mosaic technique. Therefore, the synthesized image retains the quality comparable to the visual image while the region of the concealed weapon is highlighted and enhanced. The experimental results indicate the efficiency of the proposed approach.
    48 schema:genre research_article
    49 schema:inLanguage en
    50 schema:isAccessibleForFree false
    51 schema:isPartOf N7b318dc3323b4269a536ed28d0f56bba
    52 Ncc9c1dd2e3e1486081b0b81c76e230bf
    53 sg:journal.1041985
    54 schema:name Concealed weapon detection and visualization in a synthesized image
    55 schema:pagination 375
    56 schema:productId N2026e3ee3e274661b0a9e59783aa30af
    57 N75f9709cbef84546a5a9383b99e9966b
    58 N84ce0f33e451493f98054ade0f4274b5
    59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011591987
    60 https://doi.org/10.1007/s10044-005-0020-8
    61 schema:sdDatePublished 2019-04-11T12:40
    62 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    63 schema:sdPublisher Nc1ed95181b224d4c9555a09e3ac2f361
    64 schema:url http://link.springer.com/10.1007/s10044-005-0020-8
    65 sgo:license sg:explorer/license/
    66 sgo:sdDataset articles
    67 rdf:type schema:ScholarlyArticle
    68 N2026e3ee3e274661b0a9e59783aa30af schema:name readcube_id
    69 schema:value 373ac3f243db2684a84c6827eedc821e6fc113a53516e0b851d094952571a552
    70 rdf:type schema:PropertyValue
    71 N6e5a7051966347d18ba7c03524b76ed4 rdf:first sg:person.01144533722.06
    72 rdf:rest rdf:nil
    73 N72ebeac593d649a2b689e3fa1f25ed7a rdf:first sg:person.013767557521.40
    74 rdf:rest N6e5a7051966347d18ba7c03524b76ed4
    75 N75f9709cbef84546a5a9383b99e9966b schema:name doi
    76 schema:value 10.1007/s10044-005-0020-8
    77 rdf:type schema:PropertyValue
    78 N7b318dc3323b4269a536ed28d0f56bba schema:issueNumber 4
    79 rdf:type schema:PublicationIssue
    80 N84ce0f33e451493f98054ade0f4274b5 schema:name dimensions_id
    81 schema:value pub.1011591987
    82 rdf:type schema:PropertyValue
    83 N8b9ae06c591a49f994d2fe614e5670d1 rdf:first sg:person.010045203007.52
    84 rdf:rest Nb1965056426d4114b945b52ebf66bed1
    85 Nb1965056426d4114b945b52ebf66bed1 rdf:first sg:person.016361056553.65
    86 rdf:rest N72ebeac593d649a2b689e3fa1f25ed7a
    87 Nc1ed95181b224d4c9555a09e3ac2f361 schema:name Springer Nature - SN SciGraph project
    88 rdf:type schema:Organization
    89 Ncc9c1dd2e3e1486081b0b81c76e230bf schema:volumeNumber 8
    90 rdf:type schema:PublicationVolume
    91 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    92 schema:name Information and Computing Sciences
    93 rdf:type schema:DefinedTerm
    94 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    95 schema:name Artificial Intelligence and Image Processing
    96 rdf:type schema:DefinedTerm
    97 sg:journal.1041985 schema:issn 1433-7541
    98 1433-755X
    99 schema:name Pattern Analysis and Applications
    100 rdf:type schema:Periodical
    101 sg:person.010045203007.52 schema:affiliation https://www.grid.ac/institutes/grid.28046.38
    102 schema:familyName Liu
    103 schema:givenName Zheng
    104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010045203007.52
    105 rdf:type schema:Person
    106 sg:person.01144533722.06 schema:affiliation https://www.grid.ac/institutes/grid.28046.38
    107 schema:familyName Laganière
    108 schema:givenName Robert
    109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01144533722.06
    110 rdf:type schema:Person
    111 sg:person.013767557521.40 schema:affiliation https://www.grid.ac/institutes/grid.259029.5
    112 schema:familyName Blum
    113 schema:givenName Rick S.
    114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013767557521.40
    115 rdf:type schema:Person
    116 sg:person.016361056553.65 schema:affiliation https://www.grid.ac/institutes/grid.259029.5
    117 schema:familyName Xue
    118 schema:givenName Zhiyun
    119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016361056553.65
    120 rdf:type schema:Person
    121 sg:pub.10.1007/978-1-4615-0371-2_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037194893
    122 https://doi.org/10.1007/978-1-4615-0371-2_1
    123 rdf:type schema:CreativeWork
    124 sg:pub.10.1007/978-3-662-02957-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012202380
    125 https://doi.org/10.1007/978-3-662-02957-2
    126 rdf:type schema:CreativeWork
    127 sg:pub.10.1007/978-94-015-9715-9_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041849569
    128 https://doi.org/10.1007/978-94-015-9715-9_8
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1006/gmip.1995.1022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031786795
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1016/0167-8655(89)90003-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039470457
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1016/s0167-8655(01)00047-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049634412
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1016/s1566-2535(03)00046-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024362114
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1049/ip-vis:19941184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056860324
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1049/ip-vis:20020612 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056860823
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1080/014311698215748 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029457803
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1109/18.119725 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061098596
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1109/19.872934 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061104549
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1109/30.555800 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061151578
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1109/34.85677 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061157090
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1109/36.602543 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061161654
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1109/91.493905 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061247770
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1109/acssc.1998.750934 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095084968
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1109/iccv.1993.378222 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086369269
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1109/iccv.1999.791228 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094644818
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1109/icif.2002.1020949 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095363644
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1109/icif.2003.177504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095039863
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1109/icimw.2000.893022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095400916
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.1109/icip.1995.537623 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095241165
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1109/icip.1995.537627 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094515478
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.1109/icip.1995.537667 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094903731
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.1109/icip.1997.632093 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095610063
    175 rdf:type schema:CreativeWork
    176 https://doi.org/10.1109/icip.1998.723598 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094425037
    177 rdf:type schema:CreativeWork
    178 https://doi.org/10.1109/icip.1999.817168 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094926620
    179 rdf:type schema:CreativeWork
    180 https://doi.org/10.1109/icip.1999.817171 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095271616
    181 rdf:type schema:CreativeWork
    182 https://doi.org/10.1109/icip.2002.1038073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095823727
    183 rdf:type schema:CreativeWork
    184 https://doi.org/10.1109/maes.2003.1193712 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061380718
    185 rdf:type schema:CreativeWork
    186 https://doi.org/10.1109/mcg.2004.1255805 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061391298
    187 rdf:type schema:CreativeWork
    188 https://doi.org/10.1109/msp.2005.1406480 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061422311
    189 rdf:type schema:CreativeWork
    190 https://doi.org/10.1109/tpami.2002.1114856 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061742458
    191 rdf:type schema:CreativeWork
    192 https://doi.org/10.1109/tsmc.1979.4310076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042805607
    193 rdf:type schema:CreativeWork
    194 https://doi.org/10.1117/1.1303728 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018817611
    195 rdf:type schema:CreativeWork
    196 https://doi.org/10.1117/12.213617 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032381531
    197 rdf:type schema:CreativeWork
    198 https://doi.org/10.1117/12.267176 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024857270
    199 rdf:type schema:CreativeWork
    200 https://doi.org/10.1117/12.280804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006291022
    201 rdf:type schema:CreativeWork
    202 https://doi.org/10.1117/12.327135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020225215
    203 rdf:type schema:CreativeWork
    204 https://doi.org/10.1117/12.56155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036266144
    205 rdf:type schema:CreativeWork
    206 https://www.grid.ac/institutes/grid.259029.5 schema:alternateName Lehigh University
    207 schema:name Signal Processing and Communications Research Lab, Department of Electrical and Computer Engineering, Lehigh University, 19 Memorial Drive West, 18015-3084, Bethlehem, PA, USA
    208 rdf:type schema:Organization
    209 https://www.grid.ac/institutes/grid.28046.38 schema:alternateName University of Ottawa
    210 schema:name School of Information Technology and Engineering Faulty of Engineering, University of Ottawa, SITE-5025, 800 King Edward Ave, P.O. Box 450 STN A, K1N 6N5, Ottawa, ON, Canada
    211 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...