Groundwater-level recovery following closure of open-pit mines View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2022-07-04

AUTHORS

Caglar Bozan, Ilka Wallis, Peter G. Cook, Shawan Dogramaci

ABSTRACT

Open-pit mining has increased substantially over the past two decades. Many currently operating open-pit mines are facing the end of mine-life over the next few decades and, increasingly, focus is shifting towards mine-closure planning that provides evidence on available closure options under the given geological, hydro(geo)logical and climatic conditions. This study uses synthetic groundwater modelling to build basic process understanding of closure options and how these will determine the formation of pit lakes. This governs the long-term pit lake water quality and how postmining landscapes may be utilised. Simulations show that the recovery time of postmining groundwater levels increases with decreasing aquifer transmissivity. Final postmining water tables are predominantly controlled by the implemented mine closure options and climatic conditions. The most important decision is, thereby, whether to backfill the pit to above the water table or allow a pit lake to develop. Under moderately transmissive aquifer settings, backfilling of pits leads to rapidly rising groundwater levels within the first decade after mining, with water-table recoveries of above 70%. If mine voids remain unfilled, evaporation from the pit lake surface becomes a governing factor in determining whether the unfilled mine pit becomes a terminal sink for groundwater. Lake levels may remain subdued by several 10s of metres in arid to semiarid climates. If surplus surface water can be diverted into open pits, rapid filling can accelerate groundwater recovery of open pits in regions of low permeability. This is a less successful management option in transmissive aquifers. More... »

PAGES

1819-1832

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10040-022-02508-2

DOI

http://dx.doi.org/10.1007/s10040-022-02508-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1149206052


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0406", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Geography and Environmental Geoscience", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0914", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Resources Engineering and Extractive Metallurgy", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "General Directorate of Mineral Research and Exploration, Cukurambar Mahallesi, Dumlup\u0131nar Bulvar\u0131, No:33/A, 06530, Ankara, Turkey", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "College of Science and Engineering, Flinders University, P.O. Box 2100, 5001, Adelaide, South Australia, Australia", 
            "General Directorate of Mineral Research and Exploration, Cukurambar Mahallesi, Dumlup\u0131nar Bulvar\u0131, No:33/A, 06530, Ankara, Turkey"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bozan", 
        "givenName": "Caglar", 
        "id": "sg:person.07673720103.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07673720103.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Centre for Groundwater Research and Training (NCGRT), College of Science and Engineering, Flinders University, P.O. Box 2100, 5001, Adelaide, South Australia, Australia", 
          "id": "http://www.grid.ac/institutes/grid.469318.1", 
          "name": [
            "College of Science and Engineering, Flinders University, P.O. Box 2100, 5001, Adelaide, South Australia, Australia", 
            "National Centre for Groundwater Research and Training (NCGRT), College of Science and Engineering, Flinders University, P.O. Box 2100, 5001, Adelaide, South Australia, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wallis", 
        "givenName": "Ilka", 
        "id": "sg:person.01356376747.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01356376747.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Centre for Groundwater Research and Training (NCGRT), College of Science and Engineering, Flinders University, P.O. Box 2100, 5001, Adelaide, South Australia, Australia", 
          "id": "http://www.grid.ac/institutes/grid.469318.1", 
          "name": [
            "National Centre for Groundwater Research and Training (NCGRT), College of Science and Engineering, Flinders University, P.O. Box 2100, 5001, Adelaide, South Australia, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cook", 
        "givenName": "Peter G.", 
        "id": "sg:person.0750635311.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0750635311.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Rio Tinto Iron Ore, Wesley Quarter, Level 1, 93 William St., 6000, Perth, Western Australia, Australia", 
          "id": "http://www.grid.ac/institutes/grid.480419.0", 
          "name": [
            "Rio Tinto Iron Ore, Wesley Quarter, Level 1, 93 William St., 6000, Perth, Western Australia, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dogramaci", 
        "givenName": "Shawan", 
        "id": "sg:person.016215222661.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016215222661.17"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10040-016-1467-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007090379", 
          "https://doi.org/10.1007/s10040-016-1467-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-020-70521-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1130074687", 
          "https://doi.org/10.1038/s41598-020-70521-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11069-013-0837-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026199528", 
          "https://doi.org/10.1007/s11069-013-0837-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002540050497", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045732990", 
          "https://doi.org/10.1007/s002540050497"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-010-0610-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034183657", 
          "https://doi.org/10.1007/978-94-010-0610-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002549900100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001069676", 
          "https://doi.org/10.1007/s002549900100"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-07-04", 
    "datePublishedReg": "2022-07-04", 
    "description": "Open-pit mining has increased substantially over the past two decades. Many currently operating open-pit mines are facing the end of mine-life over the next few decades and, increasingly, focus is shifting towards mine-closure planning that provides evidence on available closure options under the given geological, hydro(geo)logical and climatic conditions. This study uses synthetic groundwater modelling to build basic process understanding of closure options and how these will determine the formation of pit lakes. This governs the long-term pit lake water quality and how postmining landscapes may be utilised. Simulations show that the recovery time of postmining groundwater levels increases with decreasing aquifer transmissivity. Final postmining water tables are predominantly controlled by the implemented mine closure options and climatic conditions. The most important decision is, thereby, whether to backfill the pit to above the water table or allow a pit lake to develop. Under moderately transmissive aquifer settings, backfilling of pits leads to rapidly rising groundwater levels within the first decade after mining, with water-table recoveries of above 70%. If mine voids remain unfilled, evaporation from the pit lake surface becomes a governing factor in determining whether the unfilled mine pit becomes a terminal sink for groundwater. Lake levels may remain subdued by several 10s of metres in arid to semiarid climates. If surplus surface water can be diverted into open pits, rapid filling can accelerate groundwater recovery of open pits in regions of low permeability. This is a less successful management option in transmissive aquifers.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10040-022-02508-2", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1047968", 
        "issn": [
          "1431-2174", 
          "1435-0157"
        ], 
        "name": "Hydrogeology Journal", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "30"
      }
    ], 
    "keywords": [
      "pit lakes", 
      "water table", 
      "open pit", 
      "pit lake water quality", 
      "open-pit mine", 
      "climatic conditions", 
      "groundwater level recovery", 
      "surplus surface water", 
      "groundwater level increase", 
      "water table recovery", 
      "lake water quality", 
      "basic process understanding", 
      "lake level", 
      "groundwater modelling", 
      "lake surface", 
      "transmissive aquifers", 
      "groundwater recovery", 
      "aquifer settings", 
      "groundwater level", 
      "open-pit mining", 
      "surface water", 
      "aquifer transmissivity", 
      "terminal sinks", 
      "semiarid climate", 
      "mine pit", 
      "mine voids", 
      "water quality", 
      "process understanding", 
      "closure options", 
      "low permeability", 
      "mine closure planning", 
      "lakes", 
      "rapid filling", 
      "mine", 
      "pits", 
      "geological", 
      "aquifer", 
      "groundwater", 
      "climate", 
      "arid", 
      "sink", 
      "transmissivity", 
      "level increases", 
      "evaporation", 
      "mining", 
      "management options", 
      "water", 
      "decades", 
      "table", 
      "modelling", 
      "backfilling", 
      "landscape", 
      "region", 
      "conditions", 
      "formation", 
      "filling", 
      "first decade", 
      "permeability", 
      "surface", 
      "closure", 
      "simulations", 
      "setting", 
      "recovery time", 
      "evidence", 
      "understanding", 
      "increase", 
      "end", 
      "voids", 
      "time", 
      "levels", 
      "recovery", 
      "planning", 
      "study", 
      "quality", 
      "factors", 
      "focus", 
      "options", 
      "important decisions", 
      "decisions", 
      "successful management option"
    ], 
    "name": "Groundwater-level recovery following closure of open-pit mines", 
    "pagination": "1819-1832", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1149206052"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10040-022-02508-2"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10040-022-02508-2", 
      "https://app.dimensions.ai/details/publication/pub.1149206052"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:51", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_948.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10040-022-02508-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10040-022-02508-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10040-022-02508-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10040-022-02508-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10040-022-02508-2'


 

This table displays all metadata directly associated to this object as RDF triples.

198 TRIPLES      21 PREDICATES      112 URIs      96 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10040-022-02508-2 schema:about anzsrc-for:04
2 anzsrc-for:0406
3 anzsrc-for:09
4 anzsrc-for:0914
5 schema:author N5ff7ef0464364754a31fb3e425133da5
6 schema:citation sg:pub.10.1007/978-94-010-0610-1
7 sg:pub.10.1007/s002540050497
8 sg:pub.10.1007/s002549900100
9 sg:pub.10.1007/s10040-016-1467-y
10 sg:pub.10.1007/s11069-013-0837-1
11 sg:pub.10.1038/s41598-020-70521-0
12 schema:datePublished 2022-07-04
13 schema:datePublishedReg 2022-07-04
14 schema:description Open-pit mining has increased substantially over the past two decades. Many currently operating open-pit mines are facing the end of mine-life over the next few decades and, increasingly, focus is shifting towards mine-closure planning that provides evidence on available closure options under the given geological, hydro(geo)logical and climatic conditions. This study uses synthetic groundwater modelling to build basic process understanding of closure options and how these will determine the formation of pit lakes. This governs the long-term pit lake water quality and how postmining landscapes may be utilised. Simulations show that the recovery time of postmining groundwater levels increases with decreasing aquifer transmissivity. Final postmining water tables are predominantly controlled by the implemented mine closure options and climatic conditions. The most important decision is, thereby, whether to backfill the pit to above the water table or allow a pit lake to develop. Under moderately transmissive aquifer settings, backfilling of pits leads to rapidly rising groundwater levels within the first decade after mining, with water-table recoveries of above 70%. If mine voids remain unfilled, evaporation from the pit lake surface becomes a governing factor in determining whether the unfilled mine pit becomes a terminal sink for groundwater. Lake levels may remain subdued by several 10s of metres in arid to semiarid climates. If surplus surface water can be diverted into open pits, rapid filling can accelerate groundwater recovery of open pits in regions of low permeability. This is a less successful management option in transmissive aquifers.
15 schema:genre article
16 schema:isAccessibleForFree true
17 schema:isPartOf N7659cc4d5cf140dda92aeb82597ce6f0
18 N942c40d4ec9e4e869ba5f1e2f9895b49
19 sg:journal.1047968
20 schema:keywords aquifer
21 aquifer settings
22 aquifer transmissivity
23 arid
24 backfilling
25 basic process understanding
26 climate
27 climatic conditions
28 closure
29 closure options
30 conditions
31 decades
32 decisions
33 end
34 evaporation
35 evidence
36 factors
37 filling
38 first decade
39 focus
40 formation
41 geological
42 groundwater
43 groundwater level
44 groundwater level increase
45 groundwater level recovery
46 groundwater modelling
47 groundwater recovery
48 important decisions
49 increase
50 lake level
51 lake surface
52 lake water quality
53 lakes
54 landscape
55 level increases
56 levels
57 low permeability
58 management options
59 mine
60 mine closure planning
61 mine pit
62 mine voids
63 mining
64 modelling
65 open pit
66 open-pit mine
67 open-pit mining
68 options
69 permeability
70 pit lake water quality
71 pit lakes
72 pits
73 planning
74 process understanding
75 quality
76 rapid filling
77 recovery
78 recovery time
79 region
80 semiarid climate
81 setting
82 simulations
83 sink
84 study
85 successful management option
86 surface
87 surface water
88 surplus surface water
89 table
90 terminal sinks
91 time
92 transmissive aquifers
93 transmissivity
94 understanding
95 voids
96 water
97 water quality
98 water table
99 water table recovery
100 schema:name Groundwater-level recovery following closure of open-pit mines
101 schema:pagination 1819-1832
102 schema:productId N0b3290ac4f7a40bbb2d608df1cc0a160
103 Nd52a08474cc84a008ad32051588d4b93
104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1149206052
105 https://doi.org/10.1007/s10040-022-02508-2
106 schema:sdDatePublished 2022-10-01T06:51
107 schema:sdLicense https://scigraph.springernature.com/explorer/license/
108 schema:sdPublisher Ndb5fc21c594a46709d5ca845f89ee68c
109 schema:url https://doi.org/10.1007/s10040-022-02508-2
110 sgo:license sg:explorer/license/
111 sgo:sdDataset articles
112 rdf:type schema:ScholarlyArticle
113 N0b3290ac4f7a40bbb2d608df1cc0a160 schema:name doi
114 schema:value 10.1007/s10040-022-02508-2
115 rdf:type schema:PropertyValue
116 N4866081aacdb4b07b2cd837ec0100e49 rdf:first sg:person.016215222661.17
117 rdf:rest rdf:nil
118 N5ff7ef0464364754a31fb3e425133da5 rdf:first sg:person.07673720103.00
119 rdf:rest Nc206315ef7764057b852b029313aaf4b
120 N7659cc4d5cf140dda92aeb82597ce6f0 schema:volumeNumber 30
121 rdf:type schema:PublicationVolume
122 N942c40d4ec9e4e869ba5f1e2f9895b49 schema:issueNumber 6
123 rdf:type schema:PublicationIssue
124 Nacee833c39dd468d8443be7e16c563eb rdf:first sg:person.0750635311.36
125 rdf:rest N4866081aacdb4b07b2cd837ec0100e49
126 Nc206315ef7764057b852b029313aaf4b rdf:first sg:person.01356376747.96
127 rdf:rest Nacee833c39dd468d8443be7e16c563eb
128 Nd52a08474cc84a008ad32051588d4b93 schema:name dimensions_id
129 schema:value pub.1149206052
130 rdf:type schema:PropertyValue
131 Ndb5fc21c594a46709d5ca845f89ee68c schema:name Springer Nature - SN SciGraph project
132 rdf:type schema:Organization
133 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
134 schema:name Earth Sciences
135 rdf:type schema:DefinedTerm
136 anzsrc-for:0406 schema:inDefinedTermSet anzsrc-for:
137 schema:name Physical Geography and Environmental Geoscience
138 rdf:type schema:DefinedTerm
139 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
140 schema:name Engineering
141 rdf:type schema:DefinedTerm
142 anzsrc-for:0914 schema:inDefinedTermSet anzsrc-for:
143 schema:name Resources Engineering and Extractive Metallurgy
144 rdf:type schema:DefinedTerm
145 sg:journal.1047968 schema:issn 1431-2174
146 1435-0157
147 schema:name Hydrogeology Journal
148 schema:publisher Springer Nature
149 rdf:type schema:Periodical
150 sg:person.01356376747.96 schema:affiliation grid-institutes:grid.469318.1
151 schema:familyName Wallis
152 schema:givenName Ilka
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01356376747.96
154 rdf:type schema:Person
155 sg:person.016215222661.17 schema:affiliation grid-institutes:grid.480419.0
156 schema:familyName Dogramaci
157 schema:givenName Shawan
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016215222661.17
159 rdf:type schema:Person
160 sg:person.0750635311.36 schema:affiliation grid-institutes:grid.469318.1
161 schema:familyName Cook
162 schema:givenName Peter G.
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0750635311.36
164 rdf:type schema:Person
165 sg:person.07673720103.00 schema:affiliation grid-institutes:None
166 schema:familyName Bozan
167 schema:givenName Caglar
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07673720103.00
169 rdf:type schema:Person
170 sg:pub.10.1007/978-94-010-0610-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034183657
171 https://doi.org/10.1007/978-94-010-0610-1
172 rdf:type schema:CreativeWork
173 sg:pub.10.1007/s002540050497 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045732990
174 https://doi.org/10.1007/s002540050497
175 rdf:type schema:CreativeWork
176 sg:pub.10.1007/s002549900100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001069676
177 https://doi.org/10.1007/s002549900100
178 rdf:type schema:CreativeWork
179 sg:pub.10.1007/s10040-016-1467-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1007090379
180 https://doi.org/10.1007/s10040-016-1467-y
181 rdf:type schema:CreativeWork
182 sg:pub.10.1007/s11069-013-0837-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026199528
183 https://doi.org/10.1007/s11069-013-0837-1
184 rdf:type schema:CreativeWork
185 sg:pub.10.1038/s41598-020-70521-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1130074687
186 https://doi.org/10.1038/s41598-020-70521-0
187 rdf:type schema:CreativeWork
188 grid-institutes:None schema:alternateName General Directorate of Mineral Research and Exploration, Cukurambar Mahallesi, Dumlupınar Bulvarı, No:33/A, 06530, Ankara, Turkey
189 schema:name College of Science and Engineering, Flinders University, P.O. Box 2100, 5001, Adelaide, South Australia, Australia
190 General Directorate of Mineral Research and Exploration, Cukurambar Mahallesi, Dumlupınar Bulvarı, No:33/A, 06530, Ankara, Turkey
191 rdf:type schema:Organization
192 grid-institutes:grid.469318.1 schema:alternateName National Centre for Groundwater Research and Training (NCGRT), College of Science and Engineering, Flinders University, P.O. Box 2100, 5001, Adelaide, South Australia, Australia
193 schema:name College of Science and Engineering, Flinders University, P.O. Box 2100, 5001, Adelaide, South Australia, Australia
194 National Centre for Groundwater Research and Training (NCGRT), College of Science and Engineering, Flinders University, P.O. Box 2100, 5001, Adelaide, South Australia, Australia
195 rdf:type schema:Organization
196 grid-institutes:grid.480419.0 schema:alternateName Rio Tinto Iron Ore, Wesley Quarter, Level 1, 93 William St., 6000, Perth, Western Australia, Australia
197 schema:name Rio Tinto Iron Ore, Wesley Quarter, Level 1, 93 William St., 6000, Perth, Western Australia, Australia
198 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...