Inversion of hydrogeological parameters based on an adaptive dynamic surrogate model View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-06-16

AUTHORS

Yong Liu, Jiannan Luo, Yu Xiong, Yeifei Ji, Xin Xin

ABSTRACT

The inversion of hydrogeological parameters is an essential step of groundwater numerical simulation. A simulation-optimization method is an effective method to solve the hydrogeological parameters inversion problem. However, in the process of simulation-optimization, the groundwater numerical simulation model will be utilized thousands of times, which results in a large computational burden. To overcome this disadvantage, an adaptive dynamic surrogate model is proposed and applied to the inversion of hydrogeological parameters in a water source area in China. Firstly, the modified Morris method is introduced to screen out the sensitive parameters of the groundwater simulation model, which can reduce the dimensions of the parameters inversion. Then, an initial static surrogate model and the optimization model are constructed. Finally, the adaptive sampling method is used to iteratively update the surrogate and optimization models until the optimal inversion parameters are obtained. The results show that the adaptive dynamic surrogate model effectively improves the accuracy of the surrogate model with only 11 newly added samples compared with the static surrogate model. Validation results demonstrate that the adaptive surrogate-model-based simulation-optimization framework effectively reduces the error between the simulated and measured hydraulic heads, thus improving the accuracy and feasibility of hydrogeological parameters inversion. More... »

PAGES

1513-1527

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10040-022-02493-6

DOI

http://dx.doi.org/10.1007/s10040-022-02493-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1148730873


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "College of New Energy and Environment, Jilin University, 130021, Changchun, China", 
          "id": "http://www.grid.ac/institutes/grid.64924.3d", 
          "name": [
            "Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, 130021, Changchun, China", 
            "Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, 130021, Changchun, China", 
            "College of New Energy and Environment, Jilin University, 130021, Changchun, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Yong", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "College of New Energy and Environment, Jilin University, 130021, Changchun, China", 
          "id": "http://www.grid.ac/institutes/grid.64924.3d", 
          "name": [
            "Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, 130021, Changchun, China", 
            "Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, 130021, Changchun, China", 
            "College of New Energy and Environment, Jilin University, 130021, Changchun, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Luo", 
        "givenName": "Jiannan", 
        "id": "sg:person.014660541575.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014660541575.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "College of New Energy and Environment, Jilin University, 130021, Changchun, China", 
          "id": "http://www.grid.ac/institutes/grid.64924.3d", 
          "name": [
            "Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, 130021, Changchun, China", 
            "Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, 130021, Changchun, China", 
            "College of New Energy and Environment, Jilin University, 130021, Changchun, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xiong", 
        "givenName": "Yu", 
        "id": "sg:person.011107250514.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011107250514.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Songliao Water Resources Commission, Ministry of Water Resources, 130021, Changchun, China", 
          "id": "http://www.grid.ac/institutes/grid.453103.0", 
          "name": [
            "Songliao Water Resources Commission, Ministry of Water Resources, 130021, Changchun, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ji", 
        "givenName": "Yeifei", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "College of New Energy and Environment, Jilin University, 130021, Changchun, China", 
          "id": "http://www.grid.ac/institutes/grid.64924.3d", 
          "name": [
            "Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, 130021, Changchun, China", 
            "Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, 130021, Changchun, China", 
            "College of New Energy and Environment, Jilin University, 130021, Changchun, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xin", 
        "givenName": "Xin", 
        "id": "sg:person.016035703513.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016035703513.61"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10040-004-0404-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045573619", 
          "https://doi.org/10.1007/s10040-004-0404-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00366-004-0299-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021965511", 
          "https://doi.org/10.1007/s00366-004-0299-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00547132", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015487151", 
          "https://doi.org/10.1007/bf00547132"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10040-015-1260-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051584808", 
          "https://doi.org/10.1007/s10040-015-1260-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00158-006-0025-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041869282", 
          "https://doi.org/10.1007/s00158-006-0025-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00477-018-1559-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104786622", 
          "https://doi.org/10.1007/s00477-018-1559-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10040-020-02130-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1125485548", 
          "https://doi.org/10.1007/s10040-020-02130-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11269-018-1936-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101093895", 
          "https://doi.org/10.1007/s11269-018-1936-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00254-006-0319-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030505768", 
          "https://doi.org/10.1007/s00254-006-0319-9"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-06-16", 
    "datePublishedReg": "2022-06-16", 
    "description": "The inversion of hydrogeological parameters is an essential step of groundwater numerical simulation. A simulation-optimization method is an effective method to solve the hydrogeological parameters inversion problem. However, in the process of simulation-optimization, the groundwater numerical simulation model will be utilized thousands of times, which results in a large computational burden. To overcome this disadvantage, an adaptive dynamic surrogate model is proposed and applied to the inversion of hydrogeological parameters in a water source area in China. Firstly, the modified Morris method is introduced to screen out the sensitive parameters of the groundwater simulation model, which can reduce the dimensions of the parameters inversion. Then, an initial static surrogate model and the optimization model are constructed. Finally, the adaptive sampling method is used to iteratively update the surrogate and optimization models until the optimal inversion parameters are obtained. The results show that the adaptive dynamic surrogate model effectively improves the accuracy of the surrogate model with only 11 newly added samples compared with the static surrogate model. Validation results demonstrate that the adaptive surrogate-model-based simulation-optimization framework effectively reduces the error between the simulated and measured hydraulic heads, thus improving the accuracy and feasibility of hydrogeological parameters inversion.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10040-022-02493-6", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.8231050", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1047968", 
        "issn": [
          "1431-2174", 
          "1435-0157"
        ], 
        "name": "Hydrogeology Journal", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "30"
      }
    ], 
    "keywords": [
      "dynamic surrogate model", 
      "surrogate model", 
      "numerical simulation model", 
      "parameter inversion", 
      "hydrogeological parameters", 
      "simulation model", 
      "optimization model", 
      "simulation optimization method", 
      "large computational burden", 
      "groundwater numerical simulation", 
      "parameter inversion problem", 
      "numerical simulations", 
      "simulation-optimization framework", 
      "hydraulic head", 
      "groundwater simulation model", 
      "inversion parameters", 
      "computational burden", 
      "adaptive sampling method", 
      "groundwater numerical simulation model", 
      "validation results", 
      "Morris method", 
      "sensitive parameters", 
      "parameters", 
      "inversion problem", 
      "water source area", 
      "effective method", 
      "thousands of times", 
      "inversion", 
      "accuracy", 
      "method", 
      "simulations", 
      "model", 
      "feasibility", 
      "source area", 
      "results", 
      "error", 
      "essential step", 
      "process", 
      "disadvantages", 
      "step", 
      "sampling method", 
      "problem", 
      "time", 
      "area", 
      "dimensions", 
      "samples", 
      "framework", 
      "head", 
      "thousands", 
      "China", 
      "burden"
    ], 
    "name": "Inversion of hydrogeological parameters based on an adaptive dynamic surrogate model", 
    "pagination": "1513-1527", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1148730873"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10040-022-02493-6"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10040-022-02493-6", 
      "https://app.dimensions.ai/details/publication/pub.1148730873"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:49", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_925.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10040-022-02493-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10040-022-02493-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10040-022-02493-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10040-022-02493-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10040-022-02493-6'


 

This table displays all metadata directly associated to this object as RDF triples.

177 TRIPLES      21 PREDICATES      84 URIs      67 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10040-022-02493-6 schema:about anzsrc-for:04
2 anzsrc-for:09
3 schema:author Nf85373d0522141f9a7e120d31fdffea7
4 schema:citation sg:pub.10.1007/bf00547132
5 sg:pub.10.1007/s00158-006-0025-y
6 sg:pub.10.1007/s00254-006-0319-9
7 sg:pub.10.1007/s00366-004-0299-x
8 sg:pub.10.1007/s00477-018-1559-4
9 sg:pub.10.1007/s10040-004-0404-7
10 sg:pub.10.1007/s10040-015-1260-3
11 sg:pub.10.1007/s10040-020-02130-0
12 sg:pub.10.1007/s11269-018-1936-2
13 schema:datePublished 2022-06-16
14 schema:datePublishedReg 2022-06-16
15 schema:description The inversion of hydrogeological parameters is an essential step of groundwater numerical simulation. A simulation-optimization method is an effective method to solve the hydrogeological parameters inversion problem. However, in the process of simulation-optimization, the groundwater numerical simulation model will be utilized thousands of times, which results in a large computational burden. To overcome this disadvantage, an adaptive dynamic surrogate model is proposed and applied to the inversion of hydrogeological parameters in a water source area in China. Firstly, the modified Morris method is introduced to screen out the sensitive parameters of the groundwater simulation model, which can reduce the dimensions of the parameters inversion. Then, an initial static surrogate model and the optimization model are constructed. Finally, the adaptive sampling method is used to iteratively update the surrogate and optimization models until the optimal inversion parameters are obtained. The results show that the adaptive dynamic surrogate model effectively improves the accuracy of the surrogate model with only 11 newly added samples compared with the static surrogate model. Validation results demonstrate that the adaptive surrogate-model-based simulation-optimization framework effectively reduces the error between the simulated and measured hydraulic heads, thus improving the accuracy and feasibility of hydrogeological parameters inversion.
16 schema:genre article
17 schema:isAccessibleForFree false
18 schema:isPartOf N47ce21a7047441e5b483ac89dabd5348
19 N57d4eb2c134b4d9eacadf7d8a92492bc
20 sg:journal.1047968
21 schema:keywords China
22 Morris method
23 accuracy
24 adaptive sampling method
25 area
26 burden
27 computational burden
28 dimensions
29 disadvantages
30 dynamic surrogate model
31 effective method
32 error
33 essential step
34 feasibility
35 framework
36 groundwater numerical simulation
37 groundwater numerical simulation model
38 groundwater simulation model
39 head
40 hydraulic head
41 hydrogeological parameters
42 inversion
43 inversion parameters
44 inversion problem
45 large computational burden
46 method
47 model
48 numerical simulation model
49 numerical simulations
50 optimization model
51 parameter inversion
52 parameter inversion problem
53 parameters
54 problem
55 process
56 results
57 samples
58 sampling method
59 sensitive parameters
60 simulation model
61 simulation optimization method
62 simulation-optimization framework
63 simulations
64 source area
65 step
66 surrogate model
67 thousands
68 thousands of times
69 time
70 validation results
71 water source area
72 schema:name Inversion of hydrogeological parameters based on an adaptive dynamic surrogate model
73 schema:pagination 1513-1527
74 schema:productId N4215360c9f63417bb96a2f1a72a5394a
75 Nf0baf24b275646c293e9848570133393
76 schema:sameAs https://app.dimensions.ai/details/publication/pub.1148730873
77 https://doi.org/10.1007/s10040-022-02493-6
78 schema:sdDatePublished 2022-10-01T06:49
79 schema:sdLicense https://scigraph.springernature.com/explorer/license/
80 schema:sdPublisher N24f4aa5c09b3430285c790cde60b3611
81 schema:url https://doi.org/10.1007/s10040-022-02493-6
82 sgo:license sg:explorer/license/
83 sgo:sdDataset articles
84 rdf:type schema:ScholarlyArticle
85 N12692aef43fb44e2a000bea02f190561 rdf:first sg:person.016035703513.61
86 rdf:rest rdf:nil
87 N139171b0abd34c6dab6f3e807008822d schema:affiliation grid-institutes:grid.453103.0
88 schema:familyName Ji
89 schema:givenName Yeifei
90 rdf:type schema:Person
91 N1f4557ba03434d80a8cd295231d6ec5f rdf:first sg:person.011107250514.28
92 rdf:rest N7861033ed24a4dbaa46081022af73bee
93 N24f4aa5c09b3430285c790cde60b3611 schema:name Springer Nature - SN SciGraph project
94 rdf:type schema:Organization
95 N2a9c8302810a4db0a16f0d08c1867e18 schema:affiliation grid-institutes:grid.64924.3d
96 schema:familyName Liu
97 schema:givenName Yong
98 rdf:type schema:Person
99 N4215360c9f63417bb96a2f1a72a5394a schema:name dimensions_id
100 schema:value pub.1148730873
101 rdf:type schema:PropertyValue
102 N47ce21a7047441e5b483ac89dabd5348 schema:volumeNumber 30
103 rdf:type schema:PublicationVolume
104 N57d4eb2c134b4d9eacadf7d8a92492bc schema:issueNumber 5
105 rdf:type schema:PublicationIssue
106 N7861033ed24a4dbaa46081022af73bee rdf:first N139171b0abd34c6dab6f3e807008822d
107 rdf:rest N12692aef43fb44e2a000bea02f190561
108 Ne3100198e9d8450eae55fe3d7d940c7a rdf:first sg:person.014660541575.63
109 rdf:rest N1f4557ba03434d80a8cd295231d6ec5f
110 Nf0baf24b275646c293e9848570133393 schema:name doi
111 schema:value 10.1007/s10040-022-02493-6
112 rdf:type schema:PropertyValue
113 Nf85373d0522141f9a7e120d31fdffea7 rdf:first N2a9c8302810a4db0a16f0d08c1867e18
114 rdf:rest Ne3100198e9d8450eae55fe3d7d940c7a
115 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
116 schema:name Earth Sciences
117 rdf:type schema:DefinedTerm
118 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
119 schema:name Engineering
120 rdf:type schema:DefinedTerm
121 sg:grant.8231050 http://pending.schema.org/fundedItem sg:pub.10.1007/s10040-022-02493-6
122 rdf:type schema:MonetaryGrant
123 sg:journal.1047968 schema:issn 1431-2174
124 1435-0157
125 schema:name Hydrogeology Journal
126 schema:publisher Springer Nature
127 rdf:type schema:Periodical
128 sg:person.011107250514.28 schema:affiliation grid-institutes:grid.64924.3d
129 schema:familyName Xiong
130 schema:givenName Yu
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011107250514.28
132 rdf:type schema:Person
133 sg:person.014660541575.63 schema:affiliation grid-institutes:grid.64924.3d
134 schema:familyName Luo
135 schema:givenName Jiannan
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014660541575.63
137 rdf:type schema:Person
138 sg:person.016035703513.61 schema:affiliation grid-institutes:grid.64924.3d
139 schema:familyName Xin
140 schema:givenName Xin
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016035703513.61
142 rdf:type schema:Person
143 sg:pub.10.1007/bf00547132 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015487151
144 https://doi.org/10.1007/bf00547132
145 rdf:type schema:CreativeWork
146 sg:pub.10.1007/s00158-006-0025-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1041869282
147 https://doi.org/10.1007/s00158-006-0025-y
148 rdf:type schema:CreativeWork
149 sg:pub.10.1007/s00254-006-0319-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030505768
150 https://doi.org/10.1007/s00254-006-0319-9
151 rdf:type schema:CreativeWork
152 sg:pub.10.1007/s00366-004-0299-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1021965511
153 https://doi.org/10.1007/s00366-004-0299-x
154 rdf:type schema:CreativeWork
155 sg:pub.10.1007/s00477-018-1559-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104786622
156 https://doi.org/10.1007/s00477-018-1559-4
157 rdf:type schema:CreativeWork
158 sg:pub.10.1007/s10040-004-0404-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045573619
159 https://doi.org/10.1007/s10040-004-0404-7
160 rdf:type schema:CreativeWork
161 sg:pub.10.1007/s10040-015-1260-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051584808
162 https://doi.org/10.1007/s10040-015-1260-3
163 rdf:type schema:CreativeWork
164 sg:pub.10.1007/s10040-020-02130-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1125485548
165 https://doi.org/10.1007/s10040-020-02130-0
166 rdf:type schema:CreativeWork
167 sg:pub.10.1007/s11269-018-1936-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101093895
168 https://doi.org/10.1007/s11269-018-1936-2
169 rdf:type schema:CreativeWork
170 grid-institutes:grid.453103.0 schema:alternateName Songliao Water Resources Commission, Ministry of Water Resources, 130021, Changchun, China
171 schema:name Songliao Water Resources Commission, Ministry of Water Resources, 130021, Changchun, China
172 rdf:type schema:Organization
173 grid-institutes:grid.64924.3d schema:alternateName College of New Energy and Environment, Jilin University, 130021, Changchun, China
174 schema:name College of New Energy and Environment, Jilin University, 130021, Changchun, China
175 Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, 130021, Changchun, China
176 Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, 130021, Changchun, China
177 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...