Application of electrical resistivity tomography for delineating permafrost hydrogeology in the headwater area of Yellow River on Qinghai-Tibet Plateau, SW ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-08

AUTHORS

Shuhui Gao, Huijun Jin, Victor F. Bense, Xinbin Wang, Xiaojun Chai

ABSTRACT

Hydrogeologic processes and shallow subsurface flows control runoff generation, groundwater dynamics, and permafrost distribution at high latitudes and elevations. Electrical resistivity tomography (ERT) can effectively delineate the frozen and thawed zones in the cold environment and can be applied in permafrost hydrogeology by measuring the differences in subsurface electrical potential. A combined approach of ERT and borehole measurements is implemented to map the flow paths of the supra-permafrost and sub-permafrost waters around the Wanlong Worma Lake (WWL) basin in the headwaters of the Yellow River (northeastern Qinghai-Tibet Plateau, China). The ERT sounding results are further validated using drilling records and measured data on ground temperatures and groundwater level. Then, basic features for permafrost hydrogeology are outlined according to the ERT sounding, vegetation distribution, and geological data in the WWL basin. The results show the presence of permafrost at depths up to 15 m, in which electrical resistivity is >250 Ωm. Below the permafrost (at depth 15–80 m), electrical resistivity is generally <100 Ωm. At the depth where an aquifer occurs (20–60 m), electrical resistivity is in the range 1–25 Ωm. The sub-permafrost water moves towards the zone of taliks (unfrozen ground) under the hydraulic gradient controlled by local permafrost distribution and is affected by terrain relief. This work demonstrates the capability of ERT for delineating the distribution of the aquifers of the supra- and sub-permafrost waters and for understanding changes in hydraulic connections in a rapidly degrading alpine permafrost basin. More... »

PAGES

1-13

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10040-019-01942-z

DOI

http://dx.doi.org/10.1007/s10040-019-01942-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112634098


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0406", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Geography and Environmental Geoscience", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Gansu Agricultural University", 
          "id": "https://www.grid.ac/institutes/grid.411734.4", 
          "name": [
            "State Key Laboratory of Frozen Soils Engineering, Northwest Institute of Eco-environment and Resources, Chinese Academy of Sciences, 730000, Lanzhou, China", 
            "College of Water Conservancy and Hydropower Engineering, Gansu Agriculture University, 730070, Lanzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gao", 
        "givenName": "Shuhui", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harbin Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.19373.3f", 
          "name": [
            "State Key Laboratory of Frozen Soils Engineering, Northwest Institute of Eco-environment and Resources, Chinese Academy of Sciences, 730000, Lanzhou, China", 
            "School of Civil Engineering, Harbin Institute of Technology, 150090, Harbin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jin", 
        "givenName": "Huijun", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wageningen University & Research", 
          "id": "https://www.grid.ac/institutes/grid.4818.5", 
          "name": [
            "Hydrology and Quantitative Water Management Group, Department of Environmental Sciences, Wageningen University, 6700 AA, Wageningen, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bense", 
        "givenName": "Victor F.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Northwest Institute of Eco-Environment and Resources", 
          "id": "https://www.grid.ac/institutes/grid.496923.3", 
          "name": [
            "State Key Laboratory of Frozen Soils Engineering, Northwest Institute of Eco-environment and Resources, Chinese Academy of Sciences, 730000, Lanzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Xinbin", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Water Resource and Hydropower Investigation and Design & Research Institute of Gansu Province, 730000, Lanzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chai", 
        "givenName": "Xiaojun", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1029/2009wr007971", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001226440"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/tc-9-465-2015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006871733"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/2014wr016131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008763104"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2009.10.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010739835"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1071/eg03182", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012171368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1190/1.1440555", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012442860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/grl.50187", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012967408"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ppp.1774", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013373760"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/2015wr017732", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015862511"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hyp.8238", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016369388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biortech.2015.11.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016795946"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ppp.1938", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018667188"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2007gl031124", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019094264"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ppp.703", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020244263"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ppp.1797", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021416594"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11434-014-0189-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021488007", 
          "https://doi.org/10.1007/s11434-014-0189-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2011jf002143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022678659"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10040-012-0927-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029904120", 
          "https://doi.org/10.1007/s10040-012-0927-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/91wr03087", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031185791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ppp.616", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032365141"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ppp.652", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033232189"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ppp.652", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033232189"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2012.07.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035372579"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2011wr010666", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037294754"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2009gl039225", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037997577"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2009gl039225", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037997577"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ppp.493", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041458090"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.coldregions.2015.05.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042544786"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2008gl035822", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042666506"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ppp.1893", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042853198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hyp.10412", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043247863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1190/geo2011-0095.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044151701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/tc-5-453-2011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046530926"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2010.12.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047617828"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2478.1996.tb00142.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048068527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1748-9326/4/4/045206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048094390"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11442-015-1194-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048620373", 
          "https://doi.org/10.1007/s11442-015-1194-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2011gl047911", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050378783"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2007jf000799", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051367506"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2478.1996.tb00162.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051390891"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2136/vzj2016.01.0010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069054930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/hess-21-4803-2017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091976223"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scitotenv.2017.10.285", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092649797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scitotenv.2018.01.097", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100564735"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511535628", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109393213"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-08", 
    "datePublishedReg": "2019-03-08", 
    "description": "Hydrogeologic processes and shallow subsurface flows control runoff generation, groundwater dynamics, and permafrost distribution at high latitudes and elevations. Electrical resistivity tomography (ERT) can effectively delineate the frozen and thawed zones in the cold environment and can be applied in permafrost hydrogeology by measuring the differences in subsurface electrical potential. A combined approach of ERT and borehole measurements is implemented to map the flow paths of the supra-permafrost and sub-permafrost waters around the Wanlong Worma Lake (WWL) basin in the headwaters of the Yellow River (northeastern Qinghai-Tibet Plateau, China). The ERT sounding results are further validated using drilling records and measured data on ground temperatures and groundwater level. Then, basic features for permafrost hydrogeology are outlined according to the ERT sounding, vegetation distribution, and geological data in the WWL basin. The results show the presence of permafrost at depths up to 15 m, in which electrical resistivity is >250 \u03a9m. Below the permafrost (at depth 15\u201380 m), electrical resistivity is generally <100 \u03a9m. At the depth where an aquifer occurs (20\u201360 m), electrical resistivity is in the range 1\u201325 \u03a9m. The sub-permafrost water moves towards the zone of taliks (unfrozen ground) under the hydraulic gradient controlled by local permafrost distribution and is affected by terrain relief. This work demonstrates the capability of ERT for delineating the distribution of the aquifers of the supra- and sub-permafrost waters and for understanding changes in hydraulic connections in a rapidly degrading alpine permafrost basin.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10040-019-01942-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1047968", 
        "issn": [
          "1431-2174", 
          "1435-0157"
        ], 
        "name": "Hydrogeology Journal", 
        "type": "Periodical"
      }
    ], 
    "name": "Application of electrical resistivity tomography for delineating permafrost hydrogeology in the headwater area of Yellow River on Qinghai-Tibet Plateau, SW China", 
    "pagination": "1-13", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ea7818fb001c8bad303ff404f3831bc0daab6ccc11ef18127c5db29856d70a3b"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10040-019-01942-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112634098"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10040-019-01942-z", 
      "https://app.dimensions.ai/details/publication/pub.1112634098"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:21", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000354_0000000354/records_11728_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10040-019-01942-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10040-019-01942-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10040-019-01942-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10040-019-01942-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10040-019-01942-z'


 

This table displays all metadata directly associated to this object as RDF triples.

223 TRIPLES      21 PREDICATES      67 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10040-019-01942-z schema:about anzsrc-for:04
2 anzsrc-for:0406
3 schema:author Nf74cc5fc5b9b4ab49209f7c4a4bc22cc
4 schema:citation sg:pub.10.1007/s10040-012-0927-2
5 sg:pub.10.1007/s11434-014-0189-6
6 sg:pub.10.1007/s11442-015-1194-7
7 https://doi.org/10.1002/2014wr016131
8 https://doi.org/10.1002/2015wr017732
9 https://doi.org/10.1002/grl.50187
10 https://doi.org/10.1002/hyp.10412
11 https://doi.org/10.1002/hyp.8238
12 https://doi.org/10.1002/ppp.1774
13 https://doi.org/10.1002/ppp.1797
14 https://doi.org/10.1002/ppp.1893
15 https://doi.org/10.1002/ppp.1938
16 https://doi.org/10.1002/ppp.493
17 https://doi.org/10.1002/ppp.616
18 https://doi.org/10.1002/ppp.652
19 https://doi.org/10.1002/ppp.703
20 https://doi.org/10.1016/j.biortech.2015.11.033
21 https://doi.org/10.1016/j.coldregions.2015.05.005
22 https://doi.org/10.1016/j.jhydrol.2009.10.032
23 https://doi.org/10.1016/j.jhydrol.2010.12.036
24 https://doi.org/10.1016/j.jhydrol.2012.07.037
25 https://doi.org/10.1016/j.scitotenv.2017.10.285
26 https://doi.org/10.1016/j.scitotenv.2018.01.097
27 https://doi.org/10.1017/cbo9780511535628
28 https://doi.org/10.1029/2007gl031124
29 https://doi.org/10.1029/2007jf000799
30 https://doi.org/10.1029/2008gl035822
31 https://doi.org/10.1029/2009gl039225
32 https://doi.org/10.1029/2009wr007971
33 https://doi.org/10.1029/2011gl047911
34 https://doi.org/10.1029/2011jf002143
35 https://doi.org/10.1029/2011wr010666
36 https://doi.org/10.1029/91wr03087
37 https://doi.org/10.1071/eg03182
38 https://doi.org/10.1088/1748-9326/4/4/045206
39 https://doi.org/10.1111/j.1365-2478.1996.tb00142.x
40 https://doi.org/10.1111/j.1365-2478.1996.tb00162.x
41 https://doi.org/10.1190/1.1440555
42 https://doi.org/10.1190/geo2011-0095.1
43 https://doi.org/10.2136/vzj2016.01.0010
44 https://doi.org/10.5194/hess-21-4803-2017
45 https://doi.org/10.5194/tc-5-453-2011
46 https://doi.org/10.5194/tc-9-465-2015
47 schema:datePublished 2019-03-08
48 schema:datePublishedReg 2019-03-08
49 schema:description Hydrogeologic processes and shallow subsurface flows control runoff generation, groundwater dynamics, and permafrost distribution at high latitudes and elevations. Electrical resistivity tomography (ERT) can effectively delineate the frozen and thawed zones in the cold environment and can be applied in permafrost hydrogeology by measuring the differences in subsurface electrical potential. A combined approach of ERT and borehole measurements is implemented to map the flow paths of the supra-permafrost and sub-permafrost waters around the Wanlong Worma Lake (WWL) basin in the headwaters of the Yellow River (northeastern Qinghai-Tibet Plateau, China). The ERT sounding results are further validated using drilling records and measured data on ground temperatures and groundwater level. Then, basic features for permafrost hydrogeology are outlined according to the ERT sounding, vegetation distribution, and geological data in the WWL basin. The results show the presence of permafrost at depths up to 15 m, in which electrical resistivity is >250 Ωm. Below the permafrost (at depth 15–80 m), electrical resistivity is generally <100 Ωm. At the depth where an aquifer occurs (20–60 m), electrical resistivity is in the range 1–25 Ωm. The sub-permafrost water moves towards the zone of taliks (unfrozen ground) under the hydraulic gradient controlled by local permafrost distribution and is affected by terrain relief. This work demonstrates the capability of ERT for delineating the distribution of the aquifers of the supra- and sub-permafrost waters and for understanding changes in hydraulic connections in a rapidly degrading alpine permafrost basin.
50 schema:genre research_article
51 schema:inLanguage en
52 schema:isAccessibleForFree false
53 schema:isPartOf sg:journal.1047968
54 schema:name Application of electrical resistivity tomography for delineating permafrost hydrogeology in the headwater area of Yellow River on Qinghai-Tibet Plateau, SW China
55 schema:pagination 1-13
56 schema:productId N02dda468973e478fb5fc702570af41ca
57 N85f18e37fd19401da4edf849a46ac9c2
58 Ne1b6eef091cc4461ac43bb403abad190
59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112634098
60 https://doi.org/10.1007/s10040-019-01942-z
61 schema:sdDatePublished 2019-04-11T11:21
62 schema:sdLicense https://scigraph.springernature.com/explorer/license/
63 schema:sdPublisher N3ef6bfd3ec4641898079cdd1706054d9
64 schema:url https://link.springer.com/10.1007%2Fs10040-019-01942-z
65 sgo:license sg:explorer/license/
66 sgo:sdDataset articles
67 rdf:type schema:ScholarlyArticle
68 N02dda468973e478fb5fc702570af41ca schema:name dimensions_id
69 schema:value pub.1112634098
70 rdf:type schema:PropertyValue
71 N24240d69fde64573a301245eccfb8170 schema:affiliation https://www.grid.ac/institutes/grid.411734.4
72 schema:familyName Gao
73 schema:givenName Shuhui
74 rdf:type schema:Person
75 N35032b54fcb540618bb5e6cff0a7802d rdf:first Ne0c37a29738e412881db725916fe5075
76 rdf:rest rdf:nil
77 N3e1a7a3143e24cb4837a64360be4c7d7 schema:name Water Resource and Hydropower Investigation and Design & Research Institute of Gansu Province, 730000, Lanzhou, China
78 rdf:type schema:Organization
79 N3ef6bfd3ec4641898079cdd1706054d9 schema:name Springer Nature - SN SciGraph project
80 rdf:type schema:Organization
81 N855e64bdc0f64fef873eac8526a35b88 schema:affiliation https://www.grid.ac/institutes/grid.19373.3f
82 schema:familyName Jin
83 schema:givenName Huijun
84 rdf:type schema:Person
85 N85f18e37fd19401da4edf849a46ac9c2 schema:name readcube_id
86 schema:value ea7818fb001c8bad303ff404f3831bc0daab6ccc11ef18127c5db29856d70a3b
87 rdf:type schema:PropertyValue
88 N9827dfcd17d94c479a6d5c706d37b1a1 rdf:first Nbce9a7f3a3c04daf81099d9004af2e5e
89 rdf:rest N9b69853dcabf4d988f9c0fa018bbbb23
90 N9b69853dcabf4d988f9c0fa018bbbb23 rdf:first Nc8ba85f6297b495b9a42cfb37f36b0a8
91 rdf:rest N35032b54fcb540618bb5e6cff0a7802d
92 Nbce9a7f3a3c04daf81099d9004af2e5e schema:affiliation https://www.grid.ac/institutes/grid.4818.5
93 schema:familyName Bense
94 schema:givenName Victor F.
95 rdf:type schema:Person
96 Nc8ba85f6297b495b9a42cfb37f36b0a8 schema:affiliation https://www.grid.ac/institutes/grid.496923.3
97 schema:familyName Wang
98 schema:givenName Xinbin
99 rdf:type schema:Person
100 Ncf101c20796c48d99e920cd2ac53db59 rdf:first N855e64bdc0f64fef873eac8526a35b88
101 rdf:rest N9827dfcd17d94c479a6d5c706d37b1a1
102 Ne0c37a29738e412881db725916fe5075 schema:affiliation N3e1a7a3143e24cb4837a64360be4c7d7
103 schema:familyName Chai
104 schema:givenName Xiaojun
105 rdf:type schema:Person
106 Ne1b6eef091cc4461ac43bb403abad190 schema:name doi
107 schema:value 10.1007/s10040-019-01942-z
108 rdf:type schema:PropertyValue
109 Nf74cc5fc5b9b4ab49209f7c4a4bc22cc rdf:first N24240d69fde64573a301245eccfb8170
110 rdf:rest Ncf101c20796c48d99e920cd2ac53db59
111 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
112 schema:name Earth Sciences
113 rdf:type schema:DefinedTerm
114 anzsrc-for:0406 schema:inDefinedTermSet anzsrc-for:
115 schema:name Physical Geography and Environmental Geoscience
116 rdf:type schema:DefinedTerm
117 sg:journal.1047968 schema:issn 1431-2174
118 1435-0157
119 schema:name Hydrogeology Journal
120 rdf:type schema:Periodical
121 sg:pub.10.1007/s10040-012-0927-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029904120
122 https://doi.org/10.1007/s10040-012-0927-2
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/s11434-014-0189-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021488007
125 https://doi.org/10.1007/s11434-014-0189-6
126 rdf:type schema:CreativeWork
127 sg:pub.10.1007/s11442-015-1194-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048620373
128 https://doi.org/10.1007/s11442-015-1194-7
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1002/2014wr016131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008763104
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1002/2015wr017732 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015862511
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1002/grl.50187 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012967408
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1002/hyp.10412 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043247863
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1002/hyp.8238 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016369388
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1002/ppp.1774 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013373760
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1002/ppp.1797 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021416594
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1002/ppp.1893 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042853198
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1002/ppp.1938 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018667188
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1002/ppp.493 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041458090
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1002/ppp.616 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032365141
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1002/ppp.652 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033232189
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1002/ppp.703 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020244263
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.biortech.2015.11.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016795946
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.coldregions.2015.05.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042544786
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/j.jhydrol.2009.10.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010739835
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/j.jhydrol.2010.12.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047617828
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/j.jhydrol.2012.07.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035372579
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/j.scitotenv.2017.10.285 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092649797
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/j.scitotenv.2018.01.097 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100564735
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1017/cbo9780511535628 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109393213
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1029/2007gl031124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019094264
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1029/2007jf000799 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051367506
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1029/2008gl035822 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042666506
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1029/2009gl039225 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037997577
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1029/2009wr007971 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001226440
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1029/2011gl047911 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050378783
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1029/2011jf002143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022678659
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1029/2011wr010666 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037294754
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1029/91wr03087 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031185791
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1071/eg03182 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012171368
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1088/1748-9326/4/4/045206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048094390
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1111/j.1365-2478.1996.tb00142.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1048068527
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1111/j.1365-2478.1996.tb00162.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1051390891
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1190/1.1440555 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012442860
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1190/geo2011-0095.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044151701
201 rdf:type schema:CreativeWork
202 https://doi.org/10.2136/vzj2016.01.0010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069054930
203 rdf:type schema:CreativeWork
204 https://doi.org/10.5194/hess-21-4803-2017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091976223
205 rdf:type schema:CreativeWork
206 https://doi.org/10.5194/tc-5-453-2011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046530926
207 rdf:type schema:CreativeWork
208 https://doi.org/10.5194/tc-9-465-2015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006871733
209 rdf:type schema:CreativeWork
210 https://www.grid.ac/institutes/grid.19373.3f schema:alternateName Harbin Institute of Technology
211 schema:name School of Civil Engineering, Harbin Institute of Technology, 150090, Harbin, China
212 State Key Laboratory of Frozen Soils Engineering, Northwest Institute of Eco-environment and Resources, Chinese Academy of Sciences, 730000, Lanzhou, China
213 rdf:type schema:Organization
214 https://www.grid.ac/institutes/grid.411734.4 schema:alternateName Gansu Agricultural University
215 schema:name College of Water Conservancy and Hydropower Engineering, Gansu Agriculture University, 730070, Lanzhou, China
216 State Key Laboratory of Frozen Soils Engineering, Northwest Institute of Eco-environment and Resources, Chinese Academy of Sciences, 730000, Lanzhou, China
217 rdf:type schema:Organization
218 https://www.grid.ac/institutes/grid.4818.5 schema:alternateName Wageningen University & Research
219 schema:name Hydrology and Quantitative Water Management Group, Department of Environmental Sciences, Wageningen University, 6700 AA, Wageningen, The Netherlands
220 rdf:type schema:Organization
221 https://www.grid.ac/institutes/grid.496923.3 schema:alternateName Northwest Institute of Eco-Environment and Resources
222 schema:name State Key Laboratory of Frozen Soils Engineering, Northwest Institute of Eco-environment and Resources, Chinese Academy of Sciences, 730000, Lanzhou, China
223 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...