Ontology type: schema:ScholarlyArticle Open Access: True
2019-01-02
AUTHORSZhongyuan Xu, Bill X. Hu, Zexuan Xu, Xiujie Wu
ABSTRACTVDFST-CFP (variable-density flow and solute transport–conduit flow process) is a density-dependent discrete-continuum numerical model for simulating seawater intrusion in a dual-permeability coastal karst aquifer. A previous study (Xu and Hu 2017) simulates variable-density flow only in a single conduit, and studies the parameter sensitivities only in the horizontal case (2D domain as horizontal section) by the VDFST-CFP model. This paper focuses on the density-dependent vertical case (2D domain as vertical section) with two major improvements: 1) when implementing double-conduit networks in the domain, simulated intruded plumes in the porous medium are extended in the double-conduit scenario, compared to the single-conduit system; 2) by quantifying micro-textures on the conduit wall by the Goudar-Sonnad equation and considering macro-structures as local head loss. Sensitivity analysis shows that medium hydraulic conductivity, conduit diameter and effective porosity are important parameters for simulating seawater intrusion in the discrete-continuum system. On the other hand, rougher micro-structures and additional macro-structure components on the conduit wall would reduce the distance of seawater intrusion to the conduit system, but, rarely affect salinity distribution in the matrix. Compared to the equivalent mean roughness height, the new method (with more detailed description of structure) simulates seawater intrusion slightly landward in the conduit system. The macro-structure measured by local head loss is more reasonable but needs further study on conduit flow. Xu and Hu (2017) Development of a discrete-continuum VDFST-CFP numerical model for simulating seawater intrusion to a coastal karst aquifer with a conduit system. Water Resources Research: 53, 688-711. More... »
PAGES1277-1289
http://scigraph.springernature.com/pub.10.1007/s10040-018-1903-2
DOIhttp://dx.doi.org/10.1007/s10040-018-1903-2
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1111057597
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Engineering",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Interdisciplinary Engineering",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "College of Environment & Civil Engineering, Chengdu University of Technology, 610059, Chengdu, China",
"id": "http://www.grid.ac/institutes/grid.411288.6",
"name": [
"College of Earth, Ocean, and Environment, University of Delaware, 19716, Newark, DE, USA",
"College of Environment & Civil Engineering, Chengdu University of Technology, 610059, Chengdu, China"
],
"type": "Organization"
},
"familyName": "Xu",
"givenName": "Zhongyuan",
"id": "sg:person.016353753117.12",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016353753117.12"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute of Groundwater and Earth Sciences, The Jinan University, 510632, Guangzhou, Guangdong Province, People\u2019s Republic of China",
"id": "http://www.grid.ac/institutes/grid.258164.c",
"name": [
"School of Water Resources and Environment, China University of Geosciences (Beijing), 100083, Beijing, People\u2019s Republic of China",
"Institute of Groundwater and Earth Sciences, The Jinan University, 510632, Guangzhou, Guangdong Province, People\u2019s Republic of China"
],
"type": "Organization"
},
"familyName": "Hu",
"givenName": "Bill X.",
"id": "sg:person.012556140447.41",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012556140447.41"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, 94720, Berkeley, CA, USA",
"id": "http://www.grid.ac/institutes/grid.184769.5",
"name": [
"Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, 94720, Berkeley, CA, USA"
],
"type": "Organization"
},
"familyName": "Xu",
"givenName": "Zexuan",
"id": "sg:person.011204357255.88",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011204357255.88"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "College of Environment & Civil Engineering, Chengdu University of Technology, 610059, Chengdu, China",
"id": "http://www.grid.ac/institutes/grid.411288.6",
"name": [
"College of Environment & Civil Engineering, Chengdu University of Technology, 610059, Chengdu, China"
],
"type": "Organization"
},
"familyName": "Wu",
"givenName": "Xiujie",
"id": "sg:person.010365617047.27",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010365617047.27"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s11242-012-0061-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1042232486",
"https://doi.org/10.1007/s11242-012-0061-6"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s12665-018-7660-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1105133033",
"https://doi.org/10.1007/s12665-018-7660-7"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/srep32235",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1021994585",
"https://doi.org/10.1038/srep32235"
],
"type": "CreativeWork"
}
],
"datePublished": "2019-01-02",
"datePublishedReg": "2019-01-02",
"description": "VDFST-CFP (variable-density flow and solute transport\u2013conduit flow process) is a density-dependent discrete-continuum numerical model for simulating seawater intrusion in a dual-permeability coastal karst aquifer. A previous study (Xu and Hu 2017) simulates variable-density flow only in a single conduit, and studies the parameter sensitivities only in the horizontal case (2D domain as horizontal section) by the VDFST-CFP model. This paper focuses on the density-dependent vertical case (2D domain as vertical section) with two major improvements: 1) when implementing double-conduit networks in the domain, simulated intruded plumes in the porous medium are extended in the double-conduit scenario, compared to the single-conduit system; 2) by quantifying micro-textures on the conduit wall by the Goudar-Sonnad equation and considering macro-structures as local head loss. Sensitivity analysis shows that medium hydraulic conductivity, conduit diameter and effective porosity are important parameters for simulating seawater intrusion in the discrete-continuum system. On the other hand, rougher micro-structures and additional macro-structure components on the conduit wall would reduce the distance of seawater intrusion to the conduit system, but, rarely affect salinity distribution in the matrix. Compared to the equivalent mean roughness height, the new method (with more detailed description of structure) simulates seawater intrusion slightly landward in the conduit system. The macro-structure measured by local head loss is more reasonable but needs further study on conduit flow. Xu and Hu (2017) Development of a discrete-continuum VDFST-CFP numerical model for simulating seawater intrusion to a coastal karst aquifer with a conduit system. Water Resources Research: 53, 688-711.",
"genre": "article",
"id": "sg:pub.10.1007/s10040-018-1903-2",
"inLanguage": "en",
"isAccessibleForFree": true,
"isFundedItemOf": [
{
"id": "sg:grant.8231944",
"type": "MonetaryGrant"
}
],
"isPartOf": [
{
"id": "sg:journal.1047968",
"issn": [
"1431-2174",
"1435-0157"
],
"name": "Hydrogeology Journal",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "4",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "27"
}
],
"keywords": [
"variable-density flow",
"local head loss",
"coastal karst aquifer",
"numerical model",
"head loss",
"mean roughness height",
"medium hydraulic conductivity",
"conduit walls",
"karst aquifers",
"roughness height",
"seawater intrusion",
"porous media",
"conduit system",
"horizontal case",
"effective porosity",
"vertical case",
"hydraulic conductivity",
"salinity distribution",
"important parameters",
"conduit flow",
"flow",
"aquifer",
"sensitivity analysis",
"new method",
"porosity",
"rougher",
"process model",
"conductivity",
"wall",
"parameters",
"system",
"single conduit",
"plume",
"conduit diameter",
"model",
"major improvements",
"diameter",
"matrix",
"equations",
"height",
"intrusion",
"loss",
"method",
"scenarios",
"distribution",
"components",
"improvement",
"conduit",
"network",
"distance",
"medium",
"analysis",
"cases",
"study",
"hand",
"development",
"previous studies",
"domain",
"Xu",
"Further studies",
"paper"
],
"name": "Simulating seawater intrusion in a complex coastal karst aquifer using an improved variable-density flow and solute transport\u2013conduit flow process model",
"pagination": "1277-1289",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1111057597"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s10040-018-1903-2"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s10040-018-1903-2",
"https://app.dimensions.ai/details/publication/pub.1111057597"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-10T10:23",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_798.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s10040-018-1903-2"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10040-018-1903-2'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10040-018-1903-2'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10040-018-1903-2'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10040-018-1903-2'
This table displays all metadata directly associated to this object as RDF triples.
162 TRIPLES
22 PREDICATES
89 URIs
78 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s10040-018-1903-2 | schema:about | anzsrc-for:09 |
2 | ″ | ″ | anzsrc-for:0915 |
3 | ″ | schema:author | N0a70972345084760be234dbc38363056 |
4 | ″ | schema:citation | sg:pub.10.1007/s11242-012-0061-6 |
5 | ″ | ″ | sg:pub.10.1007/s12665-018-7660-7 |
6 | ″ | ″ | sg:pub.10.1038/srep32235 |
7 | ″ | schema:datePublished | 2019-01-02 |
8 | ″ | schema:datePublishedReg | 2019-01-02 |
9 | ″ | schema:description | VDFST-CFP (variable-density flow and solute transport–conduit flow process) is a density-dependent discrete-continuum numerical model for simulating seawater intrusion in a dual-permeability coastal karst aquifer. A previous study (Xu and Hu 2017) simulates variable-density flow only in a single conduit, and studies the parameter sensitivities only in the horizontal case (2D domain as horizontal section) by the VDFST-CFP model. This paper focuses on the density-dependent vertical case (2D domain as vertical section) with two major improvements: 1) when implementing double-conduit networks in the domain, simulated intruded plumes in the porous medium are extended in the double-conduit scenario, compared to the single-conduit system; 2) by quantifying micro-textures on the conduit wall by the Goudar-Sonnad equation and considering macro-structures as local head loss. Sensitivity analysis shows that medium hydraulic conductivity, conduit diameter and effective porosity are important parameters for simulating seawater intrusion in the discrete-continuum system. On the other hand, rougher micro-structures and additional macro-structure components on the conduit wall would reduce the distance of seawater intrusion to the conduit system, but, rarely affect salinity distribution in the matrix. Compared to the equivalent mean roughness height, the new method (with more detailed description of structure) simulates seawater intrusion slightly landward in the conduit system. The macro-structure measured by local head loss is more reasonable but needs further study on conduit flow. Xu and Hu (2017) Development of a discrete-continuum VDFST-CFP numerical model for simulating seawater intrusion to a coastal karst aquifer with a conduit system. Water Resources Research: 53, 688-711. |
10 | ″ | schema:genre | article |
11 | ″ | schema:inLanguage | en |
12 | ″ | schema:isAccessibleForFree | true |
13 | ″ | schema:isPartOf | N3bdc3aef393f46d1be21eacc4678a742 |
14 | ″ | ″ | Nac3fe37d8f17471ba1c283338f6cb233 |
15 | ″ | ″ | sg:journal.1047968 |
16 | ″ | schema:keywords | Further studies |
17 | ″ | ″ | Xu |
18 | ″ | ″ | analysis |
19 | ″ | ″ | aquifer |
20 | ″ | ″ | cases |
21 | ″ | ″ | coastal karst aquifer |
22 | ″ | ″ | components |
23 | ″ | ″ | conductivity |
24 | ″ | ″ | conduit |
25 | ″ | ″ | conduit diameter |
26 | ″ | ″ | conduit flow |
27 | ″ | ″ | conduit system |
28 | ″ | ″ | conduit walls |
29 | ″ | ″ | development |
30 | ″ | ″ | diameter |
31 | ″ | ″ | distance |
32 | ″ | ″ | distribution |
33 | ″ | ″ | domain |
34 | ″ | ″ | effective porosity |
35 | ″ | ″ | equations |
36 | ″ | ″ | flow |
37 | ″ | ″ | hand |
38 | ″ | ″ | head loss |
39 | ″ | ″ | height |
40 | ″ | ″ | horizontal case |
41 | ″ | ″ | hydraulic conductivity |
42 | ″ | ″ | important parameters |
43 | ″ | ″ | improvement |
44 | ″ | ″ | intrusion |
45 | ″ | ″ | karst aquifers |
46 | ″ | ″ | local head loss |
47 | ″ | ″ | loss |
48 | ″ | ″ | major improvements |
49 | ″ | ″ | matrix |
50 | ″ | ″ | mean roughness height |
51 | ″ | ″ | medium |
52 | ″ | ″ | medium hydraulic conductivity |
53 | ″ | ″ | method |
54 | ″ | ″ | model |
55 | ″ | ″ | network |
56 | ″ | ″ | new method |
57 | ″ | ″ | numerical model |
58 | ″ | ″ | paper |
59 | ″ | ″ | parameters |
60 | ″ | ″ | plume |
61 | ″ | ″ | porosity |
62 | ″ | ″ | porous media |
63 | ″ | ″ | previous studies |
64 | ″ | ″ | process model |
65 | ″ | ″ | rougher |
66 | ″ | ″ | roughness height |
67 | ″ | ″ | salinity distribution |
68 | ″ | ″ | scenarios |
69 | ″ | ″ | seawater intrusion |
70 | ″ | ″ | sensitivity analysis |
71 | ″ | ″ | single conduit |
72 | ″ | ″ | study |
73 | ″ | ″ | system |
74 | ″ | ″ | variable-density flow |
75 | ″ | ″ | vertical case |
76 | ″ | ″ | wall |
77 | ″ | schema:name | Simulating seawater intrusion in a complex coastal karst aquifer using an improved variable-density flow and solute transport–conduit flow process model |
78 | ″ | schema:pagination | 1277-1289 |
79 | ″ | schema:productId | N0f94325e233942c4a3397dc9a8dd8a99 |
80 | ″ | ″ | Nee79d51248074e829f043f1f60ee7bd6 |
81 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1111057597 |
82 | ″ | ″ | https://doi.org/10.1007/s10040-018-1903-2 |
83 | ″ | schema:sdDatePublished | 2022-05-10T10:23 |
84 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
85 | ″ | schema:sdPublisher | Na9b1f1f37dff4aac98b504aeeb5c99fa |
86 | ″ | schema:url | https://doi.org/10.1007/s10040-018-1903-2 |
87 | ″ | sgo:license | sg:explorer/license/ |
88 | ″ | sgo:sdDataset | articles |
89 | ″ | rdf:type | schema:ScholarlyArticle |
90 | N0a70972345084760be234dbc38363056 | rdf:first | sg:person.016353753117.12 |
91 | ″ | rdf:rest | Ne855190148a44062b4fa85d29945d945 |
92 | N0f94325e233942c4a3397dc9a8dd8a99 | schema:name | doi |
93 | ″ | schema:value | 10.1007/s10040-018-1903-2 |
94 | ″ | rdf:type | schema:PropertyValue |
95 | N3bdc3aef393f46d1be21eacc4678a742 | schema:volumeNumber | 27 |
96 | ″ | rdf:type | schema:PublicationVolume |
97 | N54df3b3ef82947ccaf0a903920927497 | rdf:first | sg:person.011204357255.88 |
98 | ″ | rdf:rest | N7d4dc9e44f76466c83f4bdbdbbb18478 |
99 | N7d4dc9e44f76466c83f4bdbdbbb18478 | rdf:first | sg:person.010365617047.27 |
100 | ″ | rdf:rest | rdf:nil |
101 | Na9b1f1f37dff4aac98b504aeeb5c99fa | schema:name | Springer Nature - SN SciGraph project |
102 | ″ | rdf:type | schema:Organization |
103 | Nac3fe37d8f17471ba1c283338f6cb233 | schema:issueNumber | 4 |
104 | ″ | rdf:type | schema:PublicationIssue |
105 | Ne855190148a44062b4fa85d29945d945 | rdf:first | sg:person.012556140447.41 |
106 | ″ | rdf:rest | N54df3b3ef82947ccaf0a903920927497 |
107 | Nee79d51248074e829f043f1f60ee7bd6 | schema:name | dimensions_id |
108 | ″ | schema:value | pub.1111057597 |
109 | ″ | rdf:type | schema:PropertyValue |
110 | anzsrc-for:09 | schema:inDefinedTermSet | anzsrc-for: |
111 | ″ | schema:name | Engineering |
112 | ″ | rdf:type | schema:DefinedTerm |
113 | anzsrc-for:0915 | schema:inDefinedTermSet | anzsrc-for: |
114 | ″ | schema:name | Interdisciplinary Engineering |
115 | ″ | rdf:type | schema:DefinedTerm |
116 | sg:grant.8231944 | http://pending.schema.org/fundedItem | sg:pub.10.1007/s10040-018-1903-2 |
117 | ″ | rdf:type | schema:MonetaryGrant |
118 | sg:journal.1047968 | schema:issn | 1431-2174 |
119 | ″ | ″ | 1435-0157 |
120 | ″ | schema:name | Hydrogeology Journal |
121 | ″ | schema:publisher | Springer Nature |
122 | ″ | rdf:type | schema:Periodical |
123 | sg:person.010365617047.27 | schema:affiliation | grid-institutes:grid.411288.6 |
124 | ″ | schema:familyName | Wu |
125 | ″ | schema:givenName | Xiujie |
126 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010365617047.27 |
127 | ″ | rdf:type | schema:Person |
128 | sg:person.011204357255.88 | schema:affiliation | grid-institutes:grid.184769.5 |
129 | ″ | schema:familyName | Xu |
130 | ″ | schema:givenName | Zexuan |
131 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011204357255.88 |
132 | ″ | rdf:type | schema:Person |
133 | sg:person.012556140447.41 | schema:affiliation | grid-institutes:grid.258164.c |
134 | ″ | schema:familyName | Hu |
135 | ″ | schema:givenName | Bill X. |
136 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012556140447.41 |
137 | ″ | rdf:type | schema:Person |
138 | sg:person.016353753117.12 | schema:affiliation | grid-institutes:grid.411288.6 |
139 | ″ | schema:familyName | Xu |
140 | ″ | schema:givenName | Zhongyuan |
141 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016353753117.12 |
142 | ″ | rdf:type | schema:Person |
143 | sg:pub.10.1007/s11242-012-0061-6 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1042232486 |
144 | ″ | ″ | https://doi.org/10.1007/s11242-012-0061-6 |
145 | ″ | rdf:type | schema:CreativeWork |
146 | sg:pub.10.1007/s12665-018-7660-7 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1105133033 |
147 | ″ | ″ | https://doi.org/10.1007/s12665-018-7660-7 |
148 | ″ | rdf:type | schema:CreativeWork |
149 | sg:pub.10.1038/srep32235 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1021994585 |
150 | ″ | ″ | https://doi.org/10.1038/srep32235 |
151 | ″ | rdf:type | schema:CreativeWork |
152 | grid-institutes:grid.184769.5 | schema:alternateName | Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, 94720, Berkeley, CA, USA |
153 | ″ | schema:name | Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, 94720, Berkeley, CA, USA |
154 | ″ | rdf:type | schema:Organization |
155 | grid-institutes:grid.258164.c | schema:alternateName | Institute of Groundwater and Earth Sciences, The Jinan University, 510632, Guangzhou, Guangdong Province, People’s Republic of China |
156 | ″ | schema:name | Institute of Groundwater and Earth Sciences, The Jinan University, 510632, Guangzhou, Guangdong Province, People’s Republic of China |
157 | ″ | ″ | School of Water Resources and Environment, China University of Geosciences (Beijing), 100083, Beijing, People’s Republic of China |
158 | ″ | rdf:type | schema:Organization |
159 | grid-institutes:grid.411288.6 | schema:alternateName | College of Environment & Civil Engineering, Chengdu University of Technology, 610059, Chengdu, China |
160 | ″ | schema:name | College of Earth, Ocean, and Environment, University of Delaware, 19716, Newark, DE, USA |
161 | ″ | ″ | College of Environment & Civil Engineering, Chengdu University of Technology, 610059, Chengdu, China |
162 | ″ | rdf:type | schema:Organization |