Simulating seawater intrusion in a complex coastal karst aquifer using an improved variable-density flow and solute transport–conduit flow process model View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-01-02

AUTHORS

Zhongyuan Xu, Bill X. Hu, Zexuan Xu, Xiujie Wu

ABSTRACT

VDFST-CFP (variable-density flow and solute transport–conduit flow process) is a density-dependent discrete-continuum numerical model for simulating seawater intrusion in a dual-permeability coastal karst aquifer. A previous study (Xu and Hu 2017) simulates variable-density flow only in a single conduit, and studies the parameter sensitivities only in the horizontal case (2D domain as horizontal section) by the VDFST-CFP model. This paper focuses on the density-dependent vertical case (2D domain as vertical section) with two major improvements: 1) when implementing double-conduit networks in the domain, simulated intruded plumes in the porous medium are extended in the double-conduit scenario, compared to the single-conduit system; 2) by quantifying micro-textures on the conduit wall by the Goudar-Sonnad equation and considering macro-structures as local head loss. Sensitivity analysis shows that medium hydraulic conductivity, conduit diameter and effective porosity are important parameters for simulating seawater intrusion in the discrete-continuum system. On the other hand, rougher micro-structures and additional macro-structure components on the conduit wall would reduce the distance of seawater intrusion to the conduit system, but, rarely affect salinity distribution in the matrix. Compared to the equivalent mean roughness height, the new method (with more detailed description of structure) simulates seawater intrusion slightly landward in the conduit system. The macro-structure measured by local head loss is more reasonable but needs further study on conduit flow. Xu and Hu (2017) Development of a discrete-continuum VDFST-CFP numerical model for simulating seawater intrusion to a coastal karst aquifer with a conduit system. Water Resources Research: 53, 688-711. More... »

PAGES

1277-1289

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10040-018-1903-2

DOI

http://dx.doi.org/10.1007/s10040-018-1903-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111057597


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "College of Environment & Civil Engineering, Chengdu University of Technology, 610059, Chengdu, China", 
          "id": "http://www.grid.ac/institutes/grid.411288.6", 
          "name": [
            "College of Earth, Ocean, and Environment, University of Delaware, 19716, Newark, DE, USA", 
            "College of Environment & Civil Engineering, Chengdu University of Technology, 610059, Chengdu, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xu", 
        "givenName": "Zhongyuan", 
        "id": "sg:person.016353753117.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016353753117.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Groundwater and Earth Sciences, The Jinan University, 510632, Guangzhou, Guangdong Province, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.258164.c", 
          "name": [
            "School of Water Resources and Environment, China University of Geosciences (Beijing), 100083, Beijing, People\u2019s Republic of China", 
            "Institute of Groundwater and Earth Sciences, The Jinan University, 510632, Guangzhou, Guangdong Province, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hu", 
        "givenName": "Bill X.", 
        "id": "sg:person.012556140447.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012556140447.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, 94720, Berkeley, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.184769.5", 
          "name": [
            "Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, 94720, Berkeley, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xu", 
        "givenName": "Zexuan", 
        "id": "sg:person.011204357255.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011204357255.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "College of Environment & Civil Engineering, Chengdu University of Technology, 610059, Chengdu, China", 
          "id": "http://www.grid.ac/institutes/grid.411288.6", 
          "name": [
            "College of Environment & Civil Engineering, Chengdu University of Technology, 610059, Chengdu, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wu", 
        "givenName": "Xiujie", 
        "id": "sg:person.010365617047.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010365617047.27"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s12665-018-7660-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105133033", 
          "https://doi.org/10.1007/s12665-018-7660-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11242-012-0061-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042232486", 
          "https://doi.org/10.1007/s11242-012-0061-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep32235", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021994585", 
          "https://doi.org/10.1038/srep32235"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-01-02", 
    "datePublishedReg": "2019-01-02", 
    "description": "VDFST-CFP (variable-density flow and solute transport\u2013conduit flow process) is a density-dependent discrete-continuum numerical model for simulating seawater intrusion in a dual-permeability coastal karst aquifer. A previous study (Xu and Hu 2017) simulates variable-density flow only in a single conduit, and studies the parameter sensitivities only in the horizontal case (2D domain as horizontal section) by the VDFST-CFP model. This paper focuses on the density-dependent vertical case (2D domain as vertical section) with two major improvements: 1) when implementing double-conduit networks in the domain, simulated intruded plumes in the porous medium are extended in the double-conduit scenario, compared to the single-conduit system; 2) by quantifying micro-textures on the conduit wall by the Goudar-Sonnad equation and considering macro-structures as local head loss. Sensitivity analysis shows that medium hydraulic conductivity, conduit diameter and effective porosity are important parameters for simulating seawater intrusion in the discrete-continuum system. On the other hand, rougher micro-structures and additional macro-structure components on the conduit wall would reduce the distance of seawater intrusion to the conduit system, but, rarely affect salinity distribution in the matrix. Compared to the equivalent mean roughness height, the new method (with more detailed description of structure) simulates seawater intrusion slightly landward in the conduit system. The macro-structure measured by local head loss is more reasonable but needs further study on conduit flow. Xu and Hu (2017) Development of a discrete-continuum VDFST-CFP numerical model for simulating seawater intrusion to a coastal karst aquifer with a conduit system. Water Resources Research: 53, 688-711.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10040-018-1903-2", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.8231944", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1047968", 
        "issn": [
          "1431-2174", 
          "1435-0157"
        ], 
        "name": "Hydrogeology Journal", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "27"
      }
    ], 
    "keywords": [
      "variable-density flow", 
      "local head loss", 
      "coastal karst aquifer", 
      "numerical model", 
      "head loss", 
      "mean roughness height", 
      "medium hydraulic conductivity", 
      "conduit walls", 
      "karst aquifers", 
      "roughness height", 
      "seawater intrusion", 
      "porous media", 
      "conduit system", 
      "horizontal case", 
      "effective porosity", 
      "vertical case", 
      "hydraulic conductivity", 
      "salinity distribution", 
      "important parameters", 
      "conduit flow", 
      "flow", 
      "aquifer", 
      "sensitivity analysis", 
      "new method", 
      "porosity", 
      "rougher", 
      "process model", 
      "conductivity", 
      "wall", 
      "parameters", 
      "system", 
      "single conduit", 
      "plume", 
      "conduit diameter", 
      "model", 
      "major improvements", 
      "diameter", 
      "matrix", 
      "equations", 
      "height", 
      "intrusion", 
      "loss", 
      "method", 
      "scenarios", 
      "distribution", 
      "components", 
      "improvement", 
      "conduit", 
      "network", 
      "distance", 
      "medium", 
      "analysis", 
      "cases", 
      "study", 
      "hand", 
      "development", 
      "previous studies", 
      "domain", 
      "Xu", 
      "Further studies", 
      "paper", 
      "VDFST-CFP", 
      "density-dependent discrete-continuum numerical model", 
      "discrete-continuum numerical model", 
      "dual-permeability coastal karst aquifer", 
      "VDFST-CFP model", 
      "density-dependent vertical case", 
      "double-conduit networks", 
      "double-conduit scenario", 
      "single-conduit system", 
      "Goudar-Sonnad equation", 
      "discrete-continuum system", 
      "additional macro-structure components", 
      "macro-structure components", 
      "equivalent mean roughness height", 
      "Hu (2017) Development", 
      "discrete-continuum VDFST-CFP numerical model", 
      "VDFST-CFP numerical model", 
      "complex coastal karst aquifer", 
      "improved variable-density flow", 
      "solute transport\u2013conduit flow process model", 
      "transport\u2013conduit flow process model", 
      "flow process model"
    ], 
    "name": "Simulating seawater intrusion in a complex coastal karst aquifer using an improved variable-density flow and solute transport\u2013conduit flow process model", 
    "pagination": "1277-1289", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111057597"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10040-018-1903-2"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10040-018-1903-2", 
      "https://app.dimensions.ai/details/publication/pub.1111057597"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_823.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10040-018-1903-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10040-018-1903-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10040-018-1903-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10040-018-1903-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10040-018-1903-2'


 

This table displays all metadata directly associated to this object as RDF triples.

184 TRIPLES      22 PREDICATES      111 URIs      100 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10040-018-1903-2 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author N1130059c48964536aea4e7c189d0d887
4 schema:citation sg:pub.10.1007/s11242-012-0061-6
5 sg:pub.10.1007/s12665-018-7660-7
6 sg:pub.10.1038/srep32235
7 schema:datePublished 2019-01-02
8 schema:datePublishedReg 2019-01-02
9 schema:description VDFST-CFP (variable-density flow and solute transport–conduit flow process) is a density-dependent discrete-continuum numerical model for simulating seawater intrusion in a dual-permeability coastal karst aquifer. A previous study (Xu and Hu 2017) simulates variable-density flow only in a single conduit, and studies the parameter sensitivities only in the horizontal case (2D domain as horizontal section) by the VDFST-CFP model. This paper focuses on the density-dependent vertical case (2D domain as vertical section) with two major improvements: 1) when implementing double-conduit networks in the domain, simulated intruded plumes in the porous medium are extended in the double-conduit scenario, compared to the single-conduit system; 2) by quantifying micro-textures on the conduit wall by the Goudar-Sonnad equation and considering macro-structures as local head loss. Sensitivity analysis shows that medium hydraulic conductivity, conduit diameter and effective porosity are important parameters for simulating seawater intrusion in the discrete-continuum system. On the other hand, rougher micro-structures and additional macro-structure components on the conduit wall would reduce the distance of seawater intrusion to the conduit system, but, rarely affect salinity distribution in the matrix. Compared to the equivalent mean roughness height, the new method (with more detailed description of structure) simulates seawater intrusion slightly landward in the conduit system. The macro-structure measured by local head loss is more reasonable but needs further study on conduit flow. Xu and Hu (2017) Development of a discrete-continuum VDFST-CFP numerical model for simulating seawater intrusion to a coastal karst aquifer with a conduit system. Water Resources Research: 53, 688-711.
10 schema:genre article
11 schema:inLanguage en
12 schema:isAccessibleForFree true
13 schema:isPartOf N1525d76c1979489fa6177707cd2243c0
14 N78a3e00c913948709d7ef720b1015bd3
15 sg:journal.1047968
16 schema:keywords Further studies
17 Goudar-Sonnad equation
18 Hu (2017) Development
19 VDFST-CFP
20 VDFST-CFP model
21 VDFST-CFP numerical model
22 Xu
23 additional macro-structure components
24 analysis
25 aquifer
26 cases
27 coastal karst aquifer
28 complex coastal karst aquifer
29 components
30 conductivity
31 conduit
32 conduit diameter
33 conduit flow
34 conduit system
35 conduit walls
36 density-dependent discrete-continuum numerical model
37 density-dependent vertical case
38 development
39 diameter
40 discrete-continuum VDFST-CFP numerical model
41 discrete-continuum numerical model
42 discrete-continuum system
43 distance
44 distribution
45 domain
46 double-conduit networks
47 double-conduit scenario
48 dual-permeability coastal karst aquifer
49 effective porosity
50 equations
51 equivalent mean roughness height
52 flow
53 flow process model
54 hand
55 head loss
56 height
57 horizontal case
58 hydraulic conductivity
59 important parameters
60 improved variable-density flow
61 improvement
62 intrusion
63 karst aquifers
64 local head loss
65 loss
66 macro-structure components
67 major improvements
68 matrix
69 mean roughness height
70 medium
71 medium hydraulic conductivity
72 method
73 model
74 network
75 new method
76 numerical model
77 paper
78 parameters
79 plume
80 porosity
81 porous media
82 previous studies
83 process model
84 rougher
85 roughness height
86 salinity distribution
87 scenarios
88 seawater intrusion
89 sensitivity analysis
90 single conduit
91 single-conduit system
92 solute transport–conduit flow process model
93 study
94 system
95 transport–conduit flow process model
96 variable-density flow
97 vertical case
98 wall
99 schema:name Simulating seawater intrusion in a complex coastal karst aquifer using an improved variable-density flow and solute transport–conduit flow process model
100 schema:pagination 1277-1289
101 schema:productId N26541d0a0e4f4fe6bc90b56acbf85852
102 N6d754ba30c914de78e620785dc535554
103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111057597
104 https://doi.org/10.1007/s10040-018-1903-2
105 schema:sdDatePublished 2022-01-01T18:54
106 schema:sdLicense https://scigraph.springernature.com/explorer/license/
107 schema:sdPublisher Nb993aab366d44e0a87d77d1e92146220
108 schema:url https://doi.org/10.1007/s10040-018-1903-2
109 sgo:license sg:explorer/license/
110 sgo:sdDataset articles
111 rdf:type schema:ScholarlyArticle
112 N1130059c48964536aea4e7c189d0d887 rdf:first sg:person.016353753117.12
113 rdf:rest Ne70c2d689f3344a09bb413e46e831313
114 N1525d76c1979489fa6177707cd2243c0 schema:volumeNumber 27
115 rdf:type schema:PublicationVolume
116 N26541d0a0e4f4fe6bc90b56acbf85852 schema:name doi
117 schema:value 10.1007/s10040-018-1903-2
118 rdf:type schema:PropertyValue
119 N45e0d1076c374b388456d69691673a26 rdf:first sg:person.011204357255.88
120 rdf:rest Ndce3f0dccc124d568f848c9a2a895dee
121 N6d754ba30c914de78e620785dc535554 schema:name dimensions_id
122 schema:value pub.1111057597
123 rdf:type schema:PropertyValue
124 N78a3e00c913948709d7ef720b1015bd3 schema:issueNumber 4
125 rdf:type schema:PublicationIssue
126 Nb993aab366d44e0a87d77d1e92146220 schema:name Springer Nature - SN SciGraph project
127 rdf:type schema:Organization
128 Ndce3f0dccc124d568f848c9a2a895dee rdf:first sg:person.010365617047.27
129 rdf:rest rdf:nil
130 Ne70c2d689f3344a09bb413e46e831313 rdf:first sg:person.012556140447.41
131 rdf:rest N45e0d1076c374b388456d69691673a26
132 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
133 schema:name Engineering
134 rdf:type schema:DefinedTerm
135 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
136 schema:name Interdisciplinary Engineering
137 rdf:type schema:DefinedTerm
138 sg:grant.8231944 http://pending.schema.org/fundedItem sg:pub.10.1007/s10040-018-1903-2
139 rdf:type schema:MonetaryGrant
140 sg:journal.1047968 schema:issn 1431-2174
141 1435-0157
142 schema:name Hydrogeology Journal
143 schema:publisher Springer Nature
144 rdf:type schema:Periodical
145 sg:person.010365617047.27 schema:affiliation grid-institutes:grid.411288.6
146 schema:familyName Wu
147 schema:givenName Xiujie
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010365617047.27
149 rdf:type schema:Person
150 sg:person.011204357255.88 schema:affiliation grid-institutes:grid.184769.5
151 schema:familyName Xu
152 schema:givenName Zexuan
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011204357255.88
154 rdf:type schema:Person
155 sg:person.012556140447.41 schema:affiliation grid-institutes:grid.258164.c
156 schema:familyName Hu
157 schema:givenName Bill X.
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012556140447.41
159 rdf:type schema:Person
160 sg:person.016353753117.12 schema:affiliation grid-institutes:grid.411288.6
161 schema:familyName Xu
162 schema:givenName Zhongyuan
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016353753117.12
164 rdf:type schema:Person
165 sg:pub.10.1007/s11242-012-0061-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042232486
166 https://doi.org/10.1007/s11242-012-0061-6
167 rdf:type schema:CreativeWork
168 sg:pub.10.1007/s12665-018-7660-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105133033
169 https://doi.org/10.1007/s12665-018-7660-7
170 rdf:type schema:CreativeWork
171 sg:pub.10.1038/srep32235 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021994585
172 https://doi.org/10.1038/srep32235
173 rdf:type schema:CreativeWork
174 grid-institutes:grid.184769.5 schema:alternateName Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, 94720, Berkeley, CA, USA
175 schema:name Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, 94720, Berkeley, CA, USA
176 rdf:type schema:Organization
177 grid-institutes:grid.258164.c schema:alternateName Institute of Groundwater and Earth Sciences, The Jinan University, 510632, Guangzhou, Guangdong Province, People’s Republic of China
178 schema:name Institute of Groundwater and Earth Sciences, The Jinan University, 510632, Guangzhou, Guangdong Province, People’s Republic of China
179 School of Water Resources and Environment, China University of Geosciences (Beijing), 100083, Beijing, People’s Republic of China
180 rdf:type schema:Organization
181 grid-institutes:grid.411288.6 schema:alternateName College of Environment & Civil Engineering, Chengdu University of Technology, 610059, Chengdu, China
182 schema:name College of Earth, Ocean, and Environment, University of Delaware, 19716, Newark, DE, USA
183 College of Environment & Civil Engineering, Chengdu University of Technology, 610059, Chengdu, China
184 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...