Soil moisture from operational meteorological satellites View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2007-02

AUTHORS

Wolfgang Wagner, Vahid Naeimi, Klaus Scipal, Richard de Jeu, José Martínez-Fernández

ABSTRACT

In recent years, unforeseen advances in monitoring soil moisture from operational satellite platforms have been made, mainly due to improved geophysical retrieval methods. In this study, four recently published soil-moisture datasets are compared with in-situ observations from the REMEDHUS monitoring network located in the semi-arid part of the Duero basin in Spain. The remotely sensed soil-moisture products are retrieved from (1) the Advanced Microwave Scanning Radiometer (AMSR-E), which is a passive microwave sensor on-board NASA’s Aqua satellite, (2) European Remote Sensing satellite (ERS) scatterometer, which is an active microwave sensor on-board the two ERS satellites and (3) visible and thermal images from the METEOSAT satellite. Statistical analysis indicates that three satellite datasets contribute effectively to the monitoring of trends in surface soil-moisture conditions, but not to the estimation of absolute soil-moisture values. These sensors, or rather their successors, will be flown on operational meteorological satellites in the near future. With further improvements in processing techniques, operational meteorological satellites will increasingly deliver high-quality soil-moisture data. This may be of particular interest for hydrogeological studies that investigate long-term processes such as groundwater recharge. More... »

PAGES

121-131

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10040-006-0104-6

DOI

http://dx.doi.org/10.1007/s10040-006-0104-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1018699086


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0909", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Geomatic Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "TU Wien", 
          "id": "https://www.grid.ac/institutes/grid.5329.d", 
          "name": [
            "Institute of Photogrammetry and Remote Sensing, Vienna University of Technology, Gusshausstrasse 27-29, 1040, Wien, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wagner", 
        "givenName": "Wolfgang", 
        "id": "sg:person.01174303764.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01174303764.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "TU Wien", 
          "id": "https://www.grid.ac/institutes/grid.5329.d", 
          "name": [
            "Institute of Photogrammetry and Remote Sensing, Vienna University of Technology, Gusshausstrasse 27-29, 1040, Wien, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Naeimi", 
        "givenName": "Vahid", 
        "id": "sg:person.016155404340.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016155404340.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "European Centre for Medium-Range Weather Forecasts", 
          "id": "https://www.grid.ac/institutes/grid.42781.38", 
          "name": [
            "European Centre for Medium-Range Weather Forecasts (ECMWF), Reading, RG2 9AX, Shinfield Park, United Kingdom"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Scipal", 
        "givenName": "Klaus", 
        "id": "sg:person.01310532364.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01310532364.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "VU University Amsterdam", 
          "id": "https://www.grid.ac/institutes/grid.12380.38", 
          "name": [
            "Department of Hydrology and GeoEnvironmental Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "de Jeu", 
        "givenName": "Richard", 
        "id": "sg:person.012701127537.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012701127537.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Salamanca", 
          "id": "https://www.grid.ac/institutes/grid.11762.33", 
          "name": [
            "Department of Geography, University of Salamanca, 37002, Salamanca, Cervantes 3, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mart\u00ednez-Fern\u00e1ndez", 
        "givenName": "Jos\u00e9", 
        "id": "sg:person.010042212663.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010042212663.38"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1029/wr016i003p00574", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000506477"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2003jd003663", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009642793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rse.2005.12.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015072517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10040-001-0168-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022674716", 
          "https://doi.org/10.1007/s10040-001-0168-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hyp.5585", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025252920"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2000jd900051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029031917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/jc087ic13p11229", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031372164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01431160410001705024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032163606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/1998jd200054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033554665"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0933-3630(94)90013-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044825242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0933-3630(94)90013-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044825242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0303-2434(01)85017-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052549036"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-1963(02)90973-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054616354"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-1963(02)90973-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054616354"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/36.752212", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061162010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/36.789610", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061162169"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/36.942542", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061162684"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/36.942551", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061162693"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/lgrs.2005.843983", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061358201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tgrs.2002.808243", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061608723"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tgrs.2004.834631", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061609223"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2136/sssaj1985.03615995004900040006x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069044713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2136/sssaj2003.1647", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069049978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2136/sssaspecpub30.c10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1088347455"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-02", 
    "datePublishedReg": "2007-02-01", 
    "description": "In recent years, unforeseen advances in monitoring soil moisture from operational satellite platforms have been made, mainly due to improved geophysical retrieval methods. In this study, four recently published soil-moisture datasets are compared with in-situ observations from the REMEDHUS monitoring network located in the semi-arid part of the Duero basin in Spain. The remotely sensed soil-moisture products are retrieved from (1) the Advanced Microwave Scanning Radiometer (AMSR-E), which is a passive microwave sensor on-board NASA\u2019s Aqua satellite, (2) European Remote Sensing satellite (ERS) scatterometer, which is an active microwave sensor on-board the two ERS satellites and (3) visible and thermal images from the METEOSAT satellite. Statistical analysis indicates that three satellite datasets contribute effectively to the monitoring of trends in surface soil-moisture conditions, but not to the estimation of absolute soil-moisture values. These sensors, or rather their successors, will be flown on operational meteorological satellites in the near future. With further improvements in processing techniques, operational meteorological satellites will increasingly deliver high-quality soil-moisture data. This may be of particular interest for hydrogeological studies that investigate long-term processes such as groundwater recharge.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10040-006-0104-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1047968", 
        "issn": [
          "1431-2174", 
          "1435-0157"
        ], 
        "name": "Hydrogeology Journal", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "15"
      }
    ], 
    "name": "Soil moisture from operational meteorological satellites", 
    "pagination": "121-131", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "59181673c8762b90f0f0a510e1ce924bb5aa76dad2e31e62af75608557f16636"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10040-006-0104-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1018699086"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10040-006-0104-6", 
      "https://app.dimensions.ai/details/publication/pub.1018699086"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:34", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000480.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s10040-006-0104-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10040-006-0104-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10040-006-0104-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10040-006-0104-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10040-006-0104-6'


 

This table displays all metadata directly associated to this object as RDF triples.

165 TRIPLES      21 PREDICATES      49 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10040-006-0104-6 schema:about anzsrc-for:09
2 anzsrc-for:0909
3 schema:author Ned366247cf3747c3a888177f1552f6ba
4 schema:citation sg:pub.10.1007/s10040-001-0168-2
5 https://doi.org/10.1002/hyp.5585
6 https://doi.org/10.1016/0933-3630(94)90013-2
7 https://doi.org/10.1016/j.rse.2005.12.016
8 https://doi.org/10.1016/s0140-1963(02)90973-0
9 https://doi.org/10.1016/s0303-2434(01)85017-0
10 https://doi.org/10.1029/1998jd200054
11 https://doi.org/10.1029/2000jd900051
12 https://doi.org/10.1029/2003jd003663
13 https://doi.org/10.1029/jc087ic13p11229
14 https://doi.org/10.1029/wr016i003p00574
15 https://doi.org/10.1080/01431160410001705024
16 https://doi.org/10.1109/36.752212
17 https://doi.org/10.1109/36.789610
18 https://doi.org/10.1109/36.942542
19 https://doi.org/10.1109/36.942551
20 https://doi.org/10.1109/lgrs.2005.843983
21 https://doi.org/10.1109/tgrs.2002.808243
22 https://doi.org/10.1109/tgrs.2004.834631
23 https://doi.org/10.2136/sssaj1985.03615995004900040006x
24 https://doi.org/10.2136/sssaj2003.1647
25 https://doi.org/10.2136/sssaspecpub30.c10
26 schema:datePublished 2007-02
27 schema:datePublishedReg 2007-02-01
28 schema:description In recent years, unforeseen advances in monitoring soil moisture from operational satellite platforms have been made, mainly due to improved geophysical retrieval methods. In this study, four recently published soil-moisture datasets are compared with in-situ observations from the REMEDHUS monitoring network located in the semi-arid part of the Duero basin in Spain. The remotely sensed soil-moisture products are retrieved from (1) the Advanced Microwave Scanning Radiometer (AMSR-E), which is a passive microwave sensor on-board NASA’s Aqua satellite, (2) European Remote Sensing satellite (ERS) scatterometer, which is an active microwave sensor on-board the two ERS satellites and (3) visible and thermal images from the METEOSAT satellite. Statistical analysis indicates that three satellite datasets contribute effectively to the monitoring of trends in surface soil-moisture conditions, but not to the estimation of absolute soil-moisture values. These sensors, or rather their successors, will be flown on operational meteorological satellites in the near future. With further improvements in processing techniques, operational meteorological satellites will increasingly deliver high-quality soil-moisture data. This may be of particular interest for hydrogeological studies that investigate long-term processes such as groundwater recharge.
29 schema:genre research_article
30 schema:inLanguage en
31 schema:isAccessibleForFree false
32 schema:isPartOf N30b8b2f0fbd6488dbc046b1ee8e25919
33 N5517c8bb3f0043ada014b85a7f4f1a7f
34 sg:journal.1047968
35 schema:name Soil moisture from operational meteorological satellites
36 schema:pagination 121-131
37 schema:productId N2b2c855a519f4497a145fc92ca3307dd
38 N4b94f4758da547d383c450622fd21724
39 N6661b4f71cf648749d19e3961934ce71
40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018699086
41 https://doi.org/10.1007/s10040-006-0104-6
42 schema:sdDatePublished 2019-04-10T16:34
43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
44 schema:sdPublisher N05a1770f1623463b8af6644bf4195419
45 schema:url http://link.springer.com/10.1007/s10040-006-0104-6
46 sgo:license sg:explorer/license/
47 sgo:sdDataset articles
48 rdf:type schema:ScholarlyArticle
49 N05a1770f1623463b8af6644bf4195419 schema:name Springer Nature - SN SciGraph project
50 rdf:type schema:Organization
51 N2b2c855a519f4497a145fc92ca3307dd schema:name readcube_id
52 schema:value 59181673c8762b90f0f0a510e1ce924bb5aa76dad2e31e62af75608557f16636
53 rdf:type schema:PropertyValue
54 N30b8b2f0fbd6488dbc046b1ee8e25919 schema:issueNumber 1
55 rdf:type schema:PublicationIssue
56 N4b94f4758da547d383c450622fd21724 schema:name doi
57 schema:value 10.1007/s10040-006-0104-6
58 rdf:type schema:PropertyValue
59 N5517c8bb3f0043ada014b85a7f4f1a7f schema:volumeNumber 15
60 rdf:type schema:PublicationVolume
61 N62cd504b266a4c758c8f1bdaffac3914 rdf:first sg:person.016155404340.25
62 rdf:rest Nfbd96d83908f4e1ea53d62de348c33fd
63 N6661b4f71cf648749d19e3961934ce71 schema:name dimensions_id
64 schema:value pub.1018699086
65 rdf:type schema:PropertyValue
66 N68f27c6f6dfc4220bd6e5f737b2e4d60 rdf:first sg:person.010042212663.38
67 rdf:rest rdf:nil
68 Nddf22925eb1c4095a82efc76f5a7533e rdf:first sg:person.012701127537.79
69 rdf:rest N68f27c6f6dfc4220bd6e5f737b2e4d60
70 Ned366247cf3747c3a888177f1552f6ba rdf:first sg:person.01174303764.82
71 rdf:rest N62cd504b266a4c758c8f1bdaffac3914
72 Nfbd96d83908f4e1ea53d62de348c33fd rdf:first sg:person.01310532364.90
73 rdf:rest Nddf22925eb1c4095a82efc76f5a7533e
74 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
75 schema:name Engineering
76 rdf:type schema:DefinedTerm
77 anzsrc-for:0909 schema:inDefinedTermSet anzsrc-for:
78 schema:name Geomatic Engineering
79 rdf:type schema:DefinedTerm
80 sg:journal.1047968 schema:issn 1431-2174
81 1435-0157
82 schema:name Hydrogeology Journal
83 rdf:type schema:Periodical
84 sg:person.010042212663.38 schema:affiliation https://www.grid.ac/institutes/grid.11762.33
85 schema:familyName Martínez-Fernández
86 schema:givenName José
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010042212663.38
88 rdf:type schema:Person
89 sg:person.01174303764.82 schema:affiliation https://www.grid.ac/institutes/grid.5329.d
90 schema:familyName Wagner
91 schema:givenName Wolfgang
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01174303764.82
93 rdf:type schema:Person
94 sg:person.012701127537.79 schema:affiliation https://www.grid.ac/institutes/grid.12380.38
95 schema:familyName de Jeu
96 schema:givenName Richard
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012701127537.79
98 rdf:type schema:Person
99 sg:person.01310532364.90 schema:affiliation https://www.grid.ac/institutes/grid.42781.38
100 schema:familyName Scipal
101 schema:givenName Klaus
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01310532364.90
103 rdf:type schema:Person
104 sg:person.016155404340.25 schema:affiliation https://www.grid.ac/institutes/grid.5329.d
105 schema:familyName Naeimi
106 schema:givenName Vahid
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016155404340.25
108 rdf:type schema:Person
109 sg:pub.10.1007/s10040-001-0168-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022674716
110 https://doi.org/10.1007/s10040-001-0168-2
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1002/hyp.5585 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025252920
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/0933-3630(94)90013-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044825242
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/j.rse.2005.12.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015072517
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/s0140-1963(02)90973-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054616354
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/s0303-2434(01)85017-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052549036
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1029/1998jd200054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033554665
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1029/2000jd900051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029031917
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1029/2003jd003663 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009642793
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1029/jc087ic13p11229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031372164
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1029/wr016i003p00574 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000506477
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1080/01431160410001705024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032163606
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1109/36.752212 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061162010
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1109/36.789610 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061162169
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1109/36.942542 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061162684
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1109/36.942551 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061162693
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1109/lgrs.2005.843983 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061358201
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1109/tgrs.2002.808243 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061608723
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1109/tgrs.2004.834631 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061609223
147 rdf:type schema:CreativeWork
148 https://doi.org/10.2136/sssaj1985.03615995004900040006x schema:sameAs https://app.dimensions.ai/details/publication/pub.1069044713
149 rdf:type schema:CreativeWork
150 https://doi.org/10.2136/sssaj2003.1647 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069049978
151 rdf:type schema:CreativeWork
152 https://doi.org/10.2136/sssaspecpub30.c10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088347455
153 rdf:type schema:CreativeWork
154 https://www.grid.ac/institutes/grid.11762.33 schema:alternateName University of Salamanca
155 schema:name Department of Geography, University of Salamanca, 37002, Salamanca, Cervantes 3, Spain
156 rdf:type schema:Organization
157 https://www.grid.ac/institutes/grid.12380.38 schema:alternateName VU University Amsterdam
158 schema:name Department of Hydrology and GeoEnvironmental Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
159 rdf:type schema:Organization
160 https://www.grid.ac/institutes/grid.42781.38 schema:alternateName European Centre for Medium-Range Weather Forecasts
161 schema:name European Centre for Medium-Range Weather Forecasts (ECMWF), Reading, RG2 9AX, Shinfield Park, United Kingdom
162 rdf:type schema:Organization
163 https://www.grid.ac/institutes/grid.5329.d schema:alternateName TU Wien
164 schema:name Institute of Photogrammetry and Remote Sensing, Vienna University of Technology, Gusshausstrasse 27-29, 1040, Wien, Austria
165 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...