Inverse problem in hydrogeology View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2005-02-25

AUTHORS

Jesús Carrera, Andrés Alcolea, Agustín Medina, Juan Hidalgo, Luit J. Slooten

ABSTRACT

The state of the groundwater inverse problem is synthesized. Emphasis is placed on aquifer characterization, where modelers have to deal with conceptual model uncertainty (notably spatial and temporal variability), scale dependence, many types of unknown parameters (transmissivity, recharge, boundary conditions, etc.), nonlinearity, and often low sensitivity of state variables (typically heads and concentrations) to aquifer properties. Because of these difficulties, calibration cannot be separated from the modeling process, as it is sometimes done in other fields. Instead, it should be viewed as one step in the process of understanding aquifer behavior. In fact, it is shown that actual parameter estimation methods do not differ from each other in the essence, though they may differ in the computational details. It is argued that there is ample room for improvement in groundwater inversion: development of user-friendly codes, accommodation of variability through geostatistics, incorporation of geological information and different types of data (temperature, occurrence and concentration of isotopes, age, etc.), proper accounting of uncertainty, etc. Despite this, even with existing codes, automatic calibration facilitates enormously the task of modeling. Therefore, it is contended that its use should become standard practice. More... »

PAGES

206-222

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10040-004-0404-7

DOI

http://dx.doi.org/10.1007/s10040-004-0404-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1045573619


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0406", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Geography and Environmental Geoscience", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "School of Civil Engineering, Technical University of Catalonia, 1-3, Jordi Girona Street, Building D2, 08034, Barcelona, Spain", 
          "id": "http://www.grid.ac/institutes/grid.6835.8", 
          "name": [
            "School of Civil Engineering, Technical University of Catalonia, 1-3, Jordi Girona Street, Building D2, 08034, Barcelona, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Carrera", 
        "givenName": "Jes\u00fas", 
        "id": "sg:person.01255647722.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01255647722.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Civil Engineering, Technical University of Catalonia, 1-3, Jordi Girona Street, Building D2, 08034, Barcelona, Spain", 
          "id": "http://www.grid.ac/institutes/grid.6835.8", 
          "name": [
            "School of Civil Engineering, Technical University of Catalonia, 1-3, Jordi Girona Street, Building D2, 08034, Barcelona, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alcolea", 
        "givenName": "Andr\u00e9s", 
        "id": "sg:person.011247074607.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011247074607.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Civil Engineering, Technical University of Catalonia, 1-3, Jordi Girona Street, Building D2, 08034, Barcelona, Spain", 
          "id": "http://www.grid.ac/institutes/grid.6835.8", 
          "name": [
            "School of Civil Engineering, Technical University of Catalonia, 1-3, Jordi Girona Street, Building D2, 08034, Barcelona, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Medina", 
        "givenName": "Agust\u00edn", 
        "id": "sg:person.07534351665.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07534351665.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Civil Engineering, Technical University of Catalonia, 1-3, Jordi Girona Street, Building D2, 08034, Barcelona, Spain", 
          "id": "http://www.grid.ac/institutes/grid.6835.8", 
          "name": [
            "School of Civil Engineering, Technical University of Catalonia, 1-3, Jordi Girona Street, Building D2, 08034, Barcelona, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hidalgo", 
        "givenName": "Juan", 
        "id": "sg:person.014244413246.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014244413246.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Civil Engineering, Technical University of Catalonia, 1-3, Jordi Girona Street, Building D2, 08034, Barcelona, Spain", 
          "id": "http://www.grid.ac/institutes/grid.6835.8", 
          "name": [
            "School of Civil Engineering, Technical University of Catalonia, 1-3, Jordi Girona Street, Building D2, 08034, Barcelona, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Slooten", 
        "givenName": "Luit J.", 
        "id": "sg:person.07741604506.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07741604506.84"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-94-010-9204-3_25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1089716081", 
          "https://doi.org/10.1007/978-94-010-9204-3_25"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10040-001-0167-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003333269", 
          "https://doi.org/10.1007/s10040-001-0167-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10040-002-0225-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008140935", 
          "https://doi.org/10.1007/s10040-002-0225-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:warm.0000004921.74256.a9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003260675", 
          "https://doi.org/10.1023/b:warm.0000004921.74256.a9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00477-003-0154-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048479377", 
          "https://doi.org/10.1007/s00477-003-0154-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1021316707087", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010692472", 
          "https://doi.org/10.1023/a:1021316707087"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00477-003-0155-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025101866", 
          "https://doi.org/10.1007/s00477-003-0155-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-009-3701-7_16", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1089757686", 
          "https://doi.org/10.1007/978-94-009-3701-7_16"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10040-003-0276-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039744492", 
          "https://doi.org/10.1007/s10040-003-0276-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-009-2889-3_31", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013431139", 
          "https://doi.org/10.1007/978-94-009-2889-3_31"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2005-02-25", 
    "datePublishedReg": "2005-02-25", 
    "description": "The state of the groundwater inverse problem is synthesized. Emphasis is placed on aquifer characterization, where modelers have to deal with conceptual model uncertainty (notably spatial and temporal variability), scale dependence, many types of unknown parameters (transmissivity, recharge, boundary conditions, etc.), nonlinearity, and often low sensitivity of state variables (typically heads and concentrations) to aquifer properties. Because of these difficulties, calibration cannot be separated from the modeling process, as it is sometimes done in other fields. Instead, it should be viewed as one step in the process of understanding aquifer behavior. In fact, it is shown that actual parameter estimation methods do not differ from each other in the essence, though they may differ in the computational details. It is argued that there is ample room for improvement in groundwater inversion: development of user-friendly codes, accommodation of variability through geostatistics, incorporation of geological information and different types of data (temperature, occurrence and concentration of isotopes, age, etc.), proper accounting of uncertainty, etc. Despite this, even with existing codes, automatic calibration facilitates enormously the task of modeling. Therefore, it is contended that its use should become standard practice.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10040-004-0404-7", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1047968", 
        "issn": [
          "1431-2174", 
          "1435-0157"
        ], 
        "name": "Hydrogeology Journal", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "13"
      }
    ], 
    "keywords": [
      "task of modeling", 
      "user-friendly code", 
      "automatic calibration", 
      "modeling process", 
      "existing codes", 
      "parameter estimation method", 
      "estimation method", 
      "computational details", 
      "inverse problem", 
      "code", 
      "model uncertainty", 
      "groundwater inverse problem", 
      "modelers", 
      "unknown parameters", 
      "task", 
      "state variables", 
      "conceptual model uncertainty", 
      "aquifer behavior", 
      "geological information", 
      "aquifer characterization", 
      "information", 
      "different types", 
      "uncertainty", 
      "calibration", 
      "modeling", 
      "ample room", 
      "process", 
      "standard practice", 
      "step", 
      "method", 
      "essence", 
      "proper accounting", 
      "hydrogeology", 
      "geostatistics", 
      "detail", 
      "data", 
      "improvement", 
      "difficulties", 
      "inversion", 
      "variability", 
      "use", 
      "room", 
      "types", 
      "field", 
      "fact", 
      "development", 
      "parameters", 
      "state", 
      "accounting", 
      "nonlinearity", 
      "emphasis", 
      "practice", 
      "behavior", 
      "variables", 
      "accommodation", 
      "properties", 
      "problem", 
      "characterization", 
      "incorporation", 
      "dependence", 
      "low sensitivity", 
      "sensitivity", 
      "actual parameter estimation methods", 
      "groundwater inversion", 
      "accommodation of variability"
    ], 
    "name": "Inverse problem in hydrogeology", 
    "pagination": "206-222", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1045573619"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10040-004-0404-7"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10040-004-0404-7", 
      "https://app.dimensions.ai/details/publication/pub.1045573619"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_396.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10040-004-0404-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10040-004-0404-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10040-004-0404-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10040-004-0404-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10040-004-0404-7'


 

This table displays all metadata directly associated to this object as RDF triples.

191 TRIPLES      22 PREDICATES      100 URIs      82 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10040-004-0404-7 schema:about anzsrc-for:04
2 anzsrc-for:0406
3 schema:author N2a9df10a45f24745bccaaf58701b150e
4 schema:citation sg:pub.10.1007/978-94-009-2889-3_31
5 sg:pub.10.1007/978-94-009-3701-7_16
6 sg:pub.10.1007/978-94-010-9204-3_25
7 sg:pub.10.1007/s00477-003-0154-4
8 sg:pub.10.1007/s00477-003-0155-3
9 sg:pub.10.1007/s10040-001-0167-3
10 sg:pub.10.1007/s10040-002-0225-5
11 sg:pub.10.1007/s10040-003-0276-2
12 sg:pub.10.1023/a:1021316707087
13 sg:pub.10.1023/b:warm.0000004921.74256.a9
14 schema:datePublished 2005-02-25
15 schema:datePublishedReg 2005-02-25
16 schema:description The state of the groundwater inverse problem is synthesized. Emphasis is placed on aquifer characterization, where modelers have to deal with conceptual model uncertainty (notably spatial and temporal variability), scale dependence, many types of unknown parameters (transmissivity, recharge, boundary conditions, etc.), nonlinearity, and often low sensitivity of state variables (typically heads and concentrations) to aquifer properties. Because of these difficulties, calibration cannot be separated from the modeling process, as it is sometimes done in other fields. Instead, it should be viewed as one step in the process of understanding aquifer behavior. In fact, it is shown that actual parameter estimation methods do not differ from each other in the essence, though they may differ in the computational details. It is argued that there is ample room for improvement in groundwater inversion: development of user-friendly codes, accommodation of variability through geostatistics, incorporation of geological information and different types of data (temperature, occurrence and concentration of isotopes, age, etc.), proper accounting of uncertainty, etc. Despite this, even with existing codes, automatic calibration facilitates enormously the task of modeling. Therefore, it is contended that its use should become standard practice.
17 schema:genre article
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf Nad0d59a977444e90bc41c4c3ae9b4e6b
21 Nea6c6a31b2d94bd8b857e59f470a75df
22 sg:journal.1047968
23 schema:keywords accommodation
24 accommodation of variability
25 accounting
26 actual parameter estimation methods
27 ample room
28 aquifer behavior
29 aquifer characterization
30 automatic calibration
31 behavior
32 calibration
33 characterization
34 code
35 computational details
36 conceptual model uncertainty
37 data
38 dependence
39 detail
40 development
41 different types
42 difficulties
43 emphasis
44 essence
45 estimation method
46 existing codes
47 fact
48 field
49 geological information
50 geostatistics
51 groundwater inverse problem
52 groundwater inversion
53 hydrogeology
54 improvement
55 incorporation
56 information
57 inverse problem
58 inversion
59 low sensitivity
60 method
61 model uncertainty
62 modelers
63 modeling
64 modeling process
65 nonlinearity
66 parameter estimation method
67 parameters
68 practice
69 problem
70 process
71 proper accounting
72 properties
73 room
74 sensitivity
75 standard practice
76 state
77 state variables
78 step
79 task
80 task of modeling
81 types
82 uncertainty
83 unknown parameters
84 use
85 user-friendly code
86 variability
87 variables
88 schema:name Inverse problem in hydrogeology
89 schema:pagination 206-222
90 schema:productId N2e88218e73c04abeb5cf38892103c1bc
91 Nf08b38e481464ecdaafa2e69f7f75aab
92 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045573619
93 https://doi.org/10.1007/s10040-004-0404-7
94 schema:sdDatePublished 2022-01-01T18:14
95 schema:sdLicense https://scigraph.springernature.com/explorer/license/
96 schema:sdPublisher N493ea07cc2344d52bc0b2c51463373ee
97 schema:url https://doi.org/10.1007/s10040-004-0404-7
98 sgo:license sg:explorer/license/
99 sgo:sdDataset articles
100 rdf:type schema:ScholarlyArticle
101 N0b6f499a5d1641b4bb7e22f882c89e43 rdf:first sg:person.011247074607.34
102 rdf:rest N258f3377343641158135ae9cb96516fe
103 N0b74875af2614753bcd421aac6702ea6 rdf:first sg:person.014244413246.78
104 rdf:rest N9b329a1f1953422099cfc360cf95f457
105 N258f3377343641158135ae9cb96516fe rdf:first sg:person.07534351665.01
106 rdf:rest N0b74875af2614753bcd421aac6702ea6
107 N2a9df10a45f24745bccaaf58701b150e rdf:first sg:person.01255647722.65
108 rdf:rest N0b6f499a5d1641b4bb7e22f882c89e43
109 N2e88218e73c04abeb5cf38892103c1bc schema:name dimensions_id
110 schema:value pub.1045573619
111 rdf:type schema:PropertyValue
112 N493ea07cc2344d52bc0b2c51463373ee schema:name Springer Nature - SN SciGraph project
113 rdf:type schema:Organization
114 N9b329a1f1953422099cfc360cf95f457 rdf:first sg:person.07741604506.84
115 rdf:rest rdf:nil
116 Nad0d59a977444e90bc41c4c3ae9b4e6b schema:issueNumber 1
117 rdf:type schema:PublicationIssue
118 Nea6c6a31b2d94bd8b857e59f470a75df schema:volumeNumber 13
119 rdf:type schema:PublicationVolume
120 Nf08b38e481464ecdaafa2e69f7f75aab schema:name doi
121 schema:value 10.1007/s10040-004-0404-7
122 rdf:type schema:PropertyValue
123 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
124 schema:name Earth Sciences
125 rdf:type schema:DefinedTerm
126 anzsrc-for:0406 schema:inDefinedTermSet anzsrc-for:
127 schema:name Physical Geography and Environmental Geoscience
128 rdf:type schema:DefinedTerm
129 sg:journal.1047968 schema:issn 1431-2174
130 1435-0157
131 schema:name Hydrogeology Journal
132 schema:publisher Springer Nature
133 rdf:type schema:Periodical
134 sg:person.011247074607.34 schema:affiliation grid-institutes:grid.6835.8
135 schema:familyName Alcolea
136 schema:givenName Andrés
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011247074607.34
138 rdf:type schema:Person
139 sg:person.01255647722.65 schema:affiliation grid-institutes:grid.6835.8
140 schema:familyName Carrera
141 schema:givenName Jesús
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01255647722.65
143 rdf:type schema:Person
144 sg:person.014244413246.78 schema:affiliation grid-institutes:grid.6835.8
145 schema:familyName Hidalgo
146 schema:givenName Juan
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014244413246.78
148 rdf:type schema:Person
149 sg:person.07534351665.01 schema:affiliation grid-institutes:grid.6835.8
150 schema:familyName Medina
151 schema:givenName Agustín
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07534351665.01
153 rdf:type schema:Person
154 sg:person.07741604506.84 schema:affiliation grid-institutes:grid.6835.8
155 schema:familyName Slooten
156 schema:givenName Luit J.
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07741604506.84
158 rdf:type schema:Person
159 sg:pub.10.1007/978-94-009-2889-3_31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013431139
160 https://doi.org/10.1007/978-94-009-2889-3_31
161 rdf:type schema:CreativeWork
162 sg:pub.10.1007/978-94-009-3701-7_16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089757686
163 https://doi.org/10.1007/978-94-009-3701-7_16
164 rdf:type schema:CreativeWork
165 sg:pub.10.1007/978-94-010-9204-3_25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089716081
166 https://doi.org/10.1007/978-94-010-9204-3_25
167 rdf:type schema:CreativeWork
168 sg:pub.10.1007/s00477-003-0154-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048479377
169 https://doi.org/10.1007/s00477-003-0154-4
170 rdf:type schema:CreativeWork
171 sg:pub.10.1007/s00477-003-0155-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025101866
172 https://doi.org/10.1007/s00477-003-0155-3
173 rdf:type schema:CreativeWork
174 sg:pub.10.1007/s10040-001-0167-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003333269
175 https://doi.org/10.1007/s10040-001-0167-3
176 rdf:type schema:CreativeWork
177 sg:pub.10.1007/s10040-002-0225-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008140935
178 https://doi.org/10.1007/s10040-002-0225-5
179 rdf:type schema:CreativeWork
180 sg:pub.10.1007/s10040-003-0276-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039744492
181 https://doi.org/10.1007/s10040-003-0276-2
182 rdf:type schema:CreativeWork
183 sg:pub.10.1023/a:1021316707087 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010692472
184 https://doi.org/10.1023/a:1021316707087
185 rdf:type schema:CreativeWork
186 sg:pub.10.1023/b:warm.0000004921.74256.a9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003260675
187 https://doi.org/10.1023/b:warm.0000004921.74256.a9
188 rdf:type schema:CreativeWork
189 grid-institutes:grid.6835.8 schema:alternateName School of Civil Engineering, Technical University of Catalonia, 1-3, Jordi Girona Street, Building D2, 08034, Barcelona, Spain
190 schema:name School of Civil Engineering, Technical University of Catalonia, 1-3, Jordi Girona Street, Building D2, 08034, Barcelona, Spain
191 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...