Hybrid multilevel STAR models for hedonic house prices View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-10

AUTHORS

Wolfgang A. Brunauer, Stefan Lang, Wolfgang Feilmayr

ABSTRACT

This article proposes a procedure that exploits two heterogeneous data sets to derive spatial house price predictions for Austria in a semiparametric hierarchical regression framework. The first data set contains a large number of house price data, but only a small number of house characteristics (a long data set), giving rise to the omitted variable bias. In contrast, the second data set contains a small number of observations with a wide range of house price attributes (a wide data set). Although the latter allows for detailed estimation of the effects of house price characteristics, the sparse and uneven distribution over the research area leads to volatility in spatial effects. To circumvent these disadvantages, we propose a two-step approach: In the first step, we model the long data set, being aware of potential bias in the estimated effects. We apply a multilevel version of structured additive regression (STAR) models in order to account for nonlinearity in price functions as well as hierarchical spatial heterogeneity not explicitly modeled by covariates. The spatial prediction from this model is used as an explanatory covariate for the wide price data in the second stage. This novel modeling approach, a hybrid multilevel STAR model, avoids the bias from omitted variables on the one hand and yields robust spatial predictions on the other hand. We present detailed comparisons of nonlinear covariate effects and spatial heterogeneity from both stages, contrasting them with estimated effects from a reference model that is only based on the wide data set. The presented results support the approach taken in this paper, which proves particularly useful for spatial prediction of house prices. More... »

PAGES

151-172

References to SciGraph publications

  • 1998-07. Analysis of Spatial Autocorrelation in House Prices in THE JOURNAL OF REAL ESTATE FINANCE AND ECONOMICS
  • 1988. Spatial Econometrics: Methods and Models in NONE
  • Journal

    TITLE

    Review of Regional Research

    ISSUE

    2

    VOLUME

    33

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10037-013-0074-9

    DOI

    http://dx.doi.org/10.1007/s10037-013-0074-9

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1041987539


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1403", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Econometrics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/14", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Economics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "UniCredit Bank Austria AG, Julius Tandler-Platz 3, 1090, Vienna, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Brunauer", 
            "givenName": "Wolfgang A.", 
            "id": "sg:person.015657455455.48", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015657455455.48"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "University of Innsbruck, Universit\u00e4tsstr. 15, 6020, Innsbruck, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lang", 
            "givenName": "Stefan", 
            "id": "sg:person.010223676761.81", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010223676761.81"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Techncal University of Vienna, Operngasse 11, 1040, Vienna, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Feilmayr", 
            "givenName": "Wolfgang", 
            "id": "sg:person.016411005764.46", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016411005764.46"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/0166-0462(85)90033-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009108607"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0166-0462(85)90033-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009108607"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/9780470690680.ch5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009192364"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.csda.2004.10.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015498897"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-015-7799-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030890521", 
              "https://doi.org/10.1007/978-94-015-7799-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-015-7799-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030890521", 
              "https://doi.org/10.1007/978-94-015-7799-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/0160017602250977", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034192437"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/0160017602250977", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034192437"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1214/ss/1038425655", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041521657"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/1467-9868.00353", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047288536"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1007703229507", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047729753", 
              "https://doi.org/10.1023/a:1007703229507"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/0160017602250972", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052413944"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/0160017602250972", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052413944"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1086/259131", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058572612"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1086/260169", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058573650"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/biomet/82.4.733", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059420612"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/1471082x13480650", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064025804"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/1471082x13480650", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064025804"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.18637/jss.v014.i11", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068672215"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2013-10", 
        "datePublishedReg": "2013-10-01", 
        "description": "This article proposes a procedure that exploits two heterogeneous data sets to derive spatial house price predictions for Austria in a semiparametric hierarchical regression framework. The first data set contains a large number of house price data, but only a small number of house characteristics (a long data set), giving rise to the omitted variable bias. In contrast, the second data set contains a small number of observations with a wide range of house price attributes (a wide data set). Although the latter allows for detailed estimation of the effects of house price characteristics, the sparse and uneven distribution over the research area leads to volatility in spatial effects. To circumvent these disadvantages, we propose a two-step approach: In the first step, we model the long data set, being aware of potential bias in the estimated effects. We apply a multilevel version of structured additive regression (STAR) models in order to account for nonlinearity in price functions as well as hierarchical spatial heterogeneity not explicitly modeled by covariates. The spatial prediction from this model is used as an explanatory covariate for the wide price data in the second stage. This novel modeling approach, a hybrid multilevel STAR model, avoids the bias from omitted variables on the one hand and yields robust spatial predictions on the other hand. We present detailed comparisons of nonlinear covariate effects and spatial heterogeneity from both stages, contrasting them with estimated effects from a reference model that is only based on the wide data set. The presented results support the approach taken in this paper, which proves particularly useful for spatial prediction of house prices.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10037-013-0074-9", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136028", 
            "issn": [
              "0173-7600", 
              "1613-9836"
            ], 
            "name": "Review of Regional Research", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "33"
          }
        ], 
        "name": "Hybrid multilevel STAR models for hedonic house prices", 
        "pagination": "151-172", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "c8025990acbbede80f81e920e47d01101ef255235372657f0f98046fddcf6a61"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10037-013-0074-9"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1041987539"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10037-013-0074-9", 
          "https://app.dimensions.ai/details/publication/pub.1041987539"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T22:27", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000490.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/s10037-013-0074-9"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10037-013-0074-9'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10037-013-0074-9'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10037-013-0074-9'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10037-013-0074-9'


     

    This table displays all metadata directly associated to this object as RDF triples.

    122 TRIPLES      21 PREDICATES      41 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10037-013-0074-9 schema:about anzsrc-for:14
    2 anzsrc-for:1403
    3 schema:author N66909f99473e4a0e91d729b6827385e5
    4 schema:citation sg:pub.10.1007/978-94-015-7799-1
    5 sg:pub.10.1023/a:1007703229507
    6 https://doi.org/10.1002/9780470690680.ch5
    7 https://doi.org/10.1016/0166-0462(85)90033-x
    8 https://doi.org/10.1016/j.csda.2004.10.011
    9 https://doi.org/10.1086/259131
    10 https://doi.org/10.1086/260169
    11 https://doi.org/10.1093/biomet/82.4.733
    12 https://doi.org/10.1111/1467-9868.00353
    13 https://doi.org/10.1177/0160017602250972
    14 https://doi.org/10.1177/0160017602250977
    15 https://doi.org/10.1177/1471082x13480650
    16 https://doi.org/10.1214/ss/1038425655
    17 https://doi.org/10.18637/jss.v014.i11
    18 schema:datePublished 2013-10
    19 schema:datePublishedReg 2013-10-01
    20 schema:description This article proposes a procedure that exploits two heterogeneous data sets to derive spatial house price predictions for Austria in a semiparametric hierarchical regression framework. The first data set contains a large number of house price data, but only a small number of house characteristics (a long data set), giving rise to the omitted variable bias. In contrast, the second data set contains a small number of observations with a wide range of house price attributes (a wide data set). Although the latter allows for detailed estimation of the effects of house price characteristics, the sparse and uneven distribution over the research area leads to volatility in spatial effects. To circumvent these disadvantages, we propose a two-step approach: In the first step, we model the long data set, being aware of potential bias in the estimated effects. We apply a multilevel version of structured additive regression (STAR) models in order to account for nonlinearity in price functions as well as hierarchical spatial heterogeneity not explicitly modeled by covariates. The spatial prediction from this model is used as an explanatory covariate for the wide price data in the second stage. This novel modeling approach, a hybrid multilevel STAR model, avoids the bias from omitted variables on the one hand and yields robust spatial predictions on the other hand. We present detailed comparisons of nonlinear covariate effects and spatial heterogeneity from both stages, contrasting them with estimated effects from a reference model that is only based on the wide data set. The presented results support the approach taken in this paper, which proves particularly useful for spatial prediction of house prices.
    21 schema:genre research_article
    22 schema:inLanguage en
    23 schema:isAccessibleForFree false
    24 schema:isPartOf N333cca715fe74721848293e7f99a7860
    25 Nac5201bf586649dfbc53415705cfb5f1
    26 sg:journal.1136028
    27 schema:name Hybrid multilevel STAR models for hedonic house prices
    28 schema:pagination 151-172
    29 schema:productId N174e0b83586743fa8d00dabc030e12b7
    30 N3c205c486b5c4cf9a8dc1eef0410cf85
    31 N9e4ea53f7a8f4749b471256b0eb56957
    32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041987539
    33 https://doi.org/10.1007/s10037-013-0074-9
    34 schema:sdDatePublished 2019-04-10T22:27
    35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    36 schema:sdPublisher Neda66fe56999484a8b542b2d185b7bbc
    37 schema:url http://link.springer.com/10.1007/s10037-013-0074-9
    38 sgo:license sg:explorer/license/
    39 sgo:sdDataset articles
    40 rdf:type schema:ScholarlyArticle
    41 N0ba9d9594334422dbda85ff1317aa558 rdf:first sg:person.010223676761.81
    42 rdf:rest N78c388defcff4a3f92a1b5172ae5d191
    43 N174e0b83586743fa8d00dabc030e12b7 schema:name dimensions_id
    44 schema:value pub.1041987539
    45 rdf:type schema:PropertyValue
    46 N333cca715fe74721848293e7f99a7860 schema:volumeNumber 33
    47 rdf:type schema:PublicationVolume
    48 N3c205c486b5c4cf9a8dc1eef0410cf85 schema:name doi
    49 schema:value 10.1007/s10037-013-0074-9
    50 rdf:type schema:PropertyValue
    51 N66909f99473e4a0e91d729b6827385e5 rdf:first sg:person.015657455455.48
    52 rdf:rest N0ba9d9594334422dbda85ff1317aa558
    53 N78c388defcff4a3f92a1b5172ae5d191 rdf:first sg:person.016411005764.46
    54 rdf:rest rdf:nil
    55 N8758433a35bd431ca2e201d6415f54a4 schema:name Techncal University of Vienna, Operngasse 11, 1040, Vienna, Austria
    56 rdf:type schema:Organization
    57 N90b3dabd6f6840d6959d301637f335f6 schema:name UniCredit Bank Austria AG, Julius Tandler-Platz 3, 1090, Vienna, Austria
    58 rdf:type schema:Organization
    59 N92066c57c20a44d19cd2f7c93632d928 schema:name University of Innsbruck, Universitätsstr. 15, 6020, Innsbruck, Austria
    60 rdf:type schema:Organization
    61 N9e4ea53f7a8f4749b471256b0eb56957 schema:name readcube_id
    62 schema:value c8025990acbbede80f81e920e47d01101ef255235372657f0f98046fddcf6a61
    63 rdf:type schema:PropertyValue
    64 Nac5201bf586649dfbc53415705cfb5f1 schema:issueNumber 2
    65 rdf:type schema:PublicationIssue
    66 Neda66fe56999484a8b542b2d185b7bbc schema:name Springer Nature - SN SciGraph project
    67 rdf:type schema:Organization
    68 anzsrc-for:14 schema:inDefinedTermSet anzsrc-for:
    69 schema:name Economics
    70 rdf:type schema:DefinedTerm
    71 anzsrc-for:1403 schema:inDefinedTermSet anzsrc-for:
    72 schema:name Econometrics
    73 rdf:type schema:DefinedTerm
    74 sg:journal.1136028 schema:issn 0173-7600
    75 1613-9836
    76 schema:name Review of Regional Research
    77 rdf:type schema:Periodical
    78 sg:person.010223676761.81 schema:affiliation N92066c57c20a44d19cd2f7c93632d928
    79 schema:familyName Lang
    80 schema:givenName Stefan
    81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010223676761.81
    82 rdf:type schema:Person
    83 sg:person.015657455455.48 schema:affiliation N90b3dabd6f6840d6959d301637f335f6
    84 schema:familyName Brunauer
    85 schema:givenName Wolfgang A.
    86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015657455455.48
    87 rdf:type schema:Person
    88 sg:person.016411005764.46 schema:affiliation N8758433a35bd431ca2e201d6415f54a4
    89 schema:familyName Feilmayr
    90 schema:givenName Wolfgang
    91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016411005764.46
    92 rdf:type schema:Person
    93 sg:pub.10.1007/978-94-015-7799-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030890521
    94 https://doi.org/10.1007/978-94-015-7799-1
    95 rdf:type schema:CreativeWork
    96 sg:pub.10.1023/a:1007703229507 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047729753
    97 https://doi.org/10.1023/a:1007703229507
    98 rdf:type schema:CreativeWork
    99 https://doi.org/10.1002/9780470690680.ch5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009192364
    100 rdf:type schema:CreativeWork
    101 https://doi.org/10.1016/0166-0462(85)90033-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1009108607
    102 rdf:type schema:CreativeWork
    103 https://doi.org/10.1016/j.csda.2004.10.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015498897
    104 rdf:type schema:CreativeWork
    105 https://doi.org/10.1086/259131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058572612
    106 rdf:type schema:CreativeWork
    107 https://doi.org/10.1086/260169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058573650
    108 rdf:type schema:CreativeWork
    109 https://doi.org/10.1093/biomet/82.4.733 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059420612
    110 rdf:type schema:CreativeWork
    111 https://doi.org/10.1111/1467-9868.00353 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047288536
    112 rdf:type schema:CreativeWork
    113 https://doi.org/10.1177/0160017602250972 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052413944
    114 rdf:type schema:CreativeWork
    115 https://doi.org/10.1177/0160017602250977 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034192437
    116 rdf:type schema:CreativeWork
    117 https://doi.org/10.1177/1471082x13480650 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064025804
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.1214/ss/1038425655 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041521657
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.18637/jss.v014.i11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068672215
    122 rdf:type schema:CreativeWork
     




    Preview window. Press ESC to close (or click here)


    ...