Particle size effects on the contact force distribution in compacted polydisperse granular assemblies View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-05

AUTHORS

Raghuram Karthik Desu, Ratna Kumar Annabattula

ABSTRACT

Contact force distribution in a polydisperse granular assembly under uniaxial compaction is investigated using DEM simulations. In general, the contact force network generated in a compacted granular assembly is inhomogeneous. The effect of the relative particle size distribution on the nature of the contact force network in a compacted polydisperse granular assembly is investigated. The probability distribution and cumulative distribution of the normal contact forces for particles of different radii in a polydisperse granular assembly are analyzed. Distribution of the coordination number and the maximum force on each particle in a group of particles of the same size are also investigated. The study reveals that the larger particles have a higher probability of experiencing stronger contact forces than the smaller particles. The smaller particles in the assembly experience a lower maximum force and coordination number when compared to the larger particles. The small particles are observed to escape from the force chains by occupying the voids formed amongst the larger particles in the assemblies with considerable particle size variation. The particle size effect on the contact force distribution reduces as the size difference between the particles reduces. The knowledge of the distribution of the contact forces in a polydisperse assembly helps in estimating the probability of crushing amongst particles of different sizes. More... »

PAGES

29

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10035-019-0883-9

DOI

http://dx.doi.org/10.1007/s10035-019-0883-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112731657


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Indian Institute of Technology Madras", 
          "id": "https://www.grid.ac/institutes/grid.417969.4", 
          "name": [
            "Mechanics of Materials Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Madras, 600036, Chennai, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Desu", 
        "givenName": "Raghuram Karthik", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Indian Institute of Technology Madras", 
          "id": "https://www.grid.ac/institutes/grid.417969.4", 
          "name": [
            "Mechanics of Materials Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Madras, 600036, Chennai, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Annabattula", 
        "givenName": "Ratna Kumar", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0022-5096(72)90029-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003463588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-5096(72)90029-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003463588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nme.2016.03.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017345095"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmps.2009.10.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019790233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apt.2010.04.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019991791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.57.3164", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023750371"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.57.3164", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023750371"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fusengdes.2010.05.042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026665452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.14356/kona.1997012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032019110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.powtec.2015.03.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036237278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fusengdes.2012.02.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042835204"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijsolstr.2014.06.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044813796"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.51.6177", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060718023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.51.6177", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060718023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.63.011302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060726179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.63.011302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060726179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.274", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060813947"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.274", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060813947"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1680/geot.1979.29.1.47", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068209785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10035-018-0800-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103249468", 
          "https://doi.org/10.1007/s10035-018-0800-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10035-018-0800-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103249468", 
          "https://doi.org/10.1007/s10035-018-0800-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.98.012905", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105752045"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.98.012905", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105752045"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-05", 
    "datePublishedReg": "2019-05-01", 
    "description": "Contact force distribution in a polydisperse granular assembly under uniaxial compaction is investigated using DEM simulations. In general, the contact force network generated in a compacted granular assembly is inhomogeneous. The effect of the relative particle size distribution on the nature of the contact force network in a compacted polydisperse granular assembly is investigated. The probability distribution and cumulative distribution of the normal contact forces for particles of different radii in a polydisperse granular assembly are analyzed. Distribution of the coordination number and the maximum force on each particle in a group of particles of the same size are also investigated. The study reveals that the larger particles have a higher probability of experiencing stronger contact forces than the smaller particles. The smaller particles in the assembly experience a lower maximum force and coordination number when compared to the larger particles. The small particles are observed to escape from the force chains by occupying the voids formed amongst the larger particles in the assemblies with considerable particle size variation. The particle size effect on the contact force distribution reduces as the size difference between the particles reduces. The knowledge of the distribution of the contact forces in a polydisperse assembly helps in estimating the probability of crushing amongst particles of different sizes.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10035-019-0883-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1052633", 
        "issn": [
          "1434-5021", 
          "1434-7636"
        ], 
        "name": "Granular Matter", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "21"
      }
    ], 
    "name": "Particle size effects on the contact force distribution in compacted polydisperse granular assemblies", 
    "pagination": "29", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6799ca215755c46f1d084534dc3f656db4a0e983795c63e662d619684ddf37f5"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10035-019-0883-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112731657"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10035-019-0883-9", 
      "https://app.dimensions.ai/details/publication/pub.1112731657"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:42", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000358_0000000358/records_127444_00000011.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10035-019-0883-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10035-019-0883-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10035-019-0883-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10035-019-0883-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10035-019-0883-9'


 

This table displays all metadata directly associated to this object as RDF triples.

115 TRIPLES      21 PREDICATES      43 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10035-019-0883-9 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N3097fc4ee52e4ecd942895681b2337af
4 schema:citation sg:pub.10.1007/s10035-018-0800-7
5 https://doi.org/10.1016/0022-5096(72)90029-4
6 https://doi.org/10.1016/j.apt.2010.04.003
7 https://doi.org/10.1016/j.fusengdes.2010.05.042
8 https://doi.org/10.1016/j.fusengdes.2012.02.033
9 https://doi.org/10.1016/j.ijsolstr.2014.06.029
10 https://doi.org/10.1016/j.jmps.2009.10.009
11 https://doi.org/10.1016/j.nme.2016.03.002
12 https://doi.org/10.1016/j.powtec.2015.03.006
13 https://doi.org/10.1103/physreve.51.6177
14 https://doi.org/10.1103/physreve.57.3164
15 https://doi.org/10.1103/physreve.63.011302
16 https://doi.org/10.1103/physreve.98.012905
17 https://doi.org/10.1103/physrevlett.77.274
18 https://doi.org/10.14356/kona.1997012
19 https://doi.org/10.1680/geot.1979.29.1.47
20 schema:datePublished 2019-05
21 schema:datePublishedReg 2019-05-01
22 schema:description Contact force distribution in a polydisperse granular assembly under uniaxial compaction is investigated using DEM simulations. In general, the contact force network generated in a compacted granular assembly is inhomogeneous. The effect of the relative particle size distribution on the nature of the contact force network in a compacted polydisperse granular assembly is investigated. The probability distribution and cumulative distribution of the normal contact forces for particles of different radii in a polydisperse granular assembly are analyzed. Distribution of the coordination number and the maximum force on each particle in a group of particles of the same size are also investigated. The study reveals that the larger particles have a higher probability of experiencing stronger contact forces than the smaller particles. The smaller particles in the assembly experience a lower maximum force and coordination number when compared to the larger particles. The small particles are observed to escape from the force chains by occupying the voids formed amongst the larger particles in the assemblies with considerable particle size variation. The particle size effect on the contact force distribution reduces as the size difference between the particles reduces. The knowledge of the distribution of the contact forces in a polydisperse assembly helps in estimating the probability of crushing amongst particles of different sizes.
23 schema:genre research_article
24 schema:inLanguage en
25 schema:isAccessibleForFree false
26 schema:isPartOf N2464f7395153447ab81237750f8c0b1b
27 N4e8179802913415da865cd998d217ee2
28 sg:journal.1052633
29 schema:name Particle size effects on the contact force distribution in compacted polydisperse granular assemblies
30 schema:pagination 29
31 schema:productId N36ad0e5c74f041f88720a0ce0acd5bd0
32 Nb48e6ac97ed04b9189acfc16d1c37bc6
33 Nd9341e8531e14a95a3e8b3993bd9c8e9
34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112731657
35 https://doi.org/10.1007/s10035-019-0883-9
36 schema:sdDatePublished 2019-04-11T11:42
37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
38 schema:sdPublisher Nf2bd226ac4fc48d3818dbeaa79993aef
39 schema:url https://link.springer.com/10.1007%2Fs10035-019-0883-9
40 sgo:license sg:explorer/license/
41 sgo:sdDataset articles
42 rdf:type schema:ScholarlyArticle
43 N0f8b5ca7d10149a595fdb5b8f3a506ec schema:affiliation https://www.grid.ac/institutes/grid.417969.4
44 schema:familyName Desu
45 schema:givenName Raghuram Karthik
46 rdf:type schema:Person
47 N2464f7395153447ab81237750f8c0b1b schema:volumeNumber 21
48 rdf:type schema:PublicationVolume
49 N3097fc4ee52e4ecd942895681b2337af rdf:first N0f8b5ca7d10149a595fdb5b8f3a506ec
50 rdf:rest N419b5b21e21d46d594885b6b036354b5
51 N36ad0e5c74f041f88720a0ce0acd5bd0 schema:name doi
52 schema:value 10.1007/s10035-019-0883-9
53 rdf:type schema:PropertyValue
54 N419b5b21e21d46d594885b6b036354b5 rdf:first N85603ba110c243e4a9afeb71a6e74793
55 rdf:rest rdf:nil
56 N4e8179802913415da865cd998d217ee2 schema:issueNumber 2
57 rdf:type schema:PublicationIssue
58 N85603ba110c243e4a9afeb71a6e74793 schema:affiliation https://www.grid.ac/institutes/grid.417969.4
59 schema:familyName Annabattula
60 schema:givenName Ratna Kumar
61 rdf:type schema:Person
62 Nb48e6ac97ed04b9189acfc16d1c37bc6 schema:name dimensions_id
63 schema:value pub.1112731657
64 rdf:type schema:PropertyValue
65 Nd9341e8531e14a95a3e8b3993bd9c8e9 schema:name readcube_id
66 schema:value 6799ca215755c46f1d084534dc3f656db4a0e983795c63e662d619684ddf37f5
67 rdf:type schema:PropertyValue
68 Nf2bd226ac4fc48d3818dbeaa79993aef schema:name Springer Nature - SN SciGraph project
69 rdf:type schema:Organization
70 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
71 schema:name Chemical Sciences
72 rdf:type schema:DefinedTerm
73 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
74 schema:name Physical Chemistry (incl. Structural)
75 rdf:type schema:DefinedTerm
76 sg:journal.1052633 schema:issn 1434-5021
77 1434-7636
78 schema:name Granular Matter
79 rdf:type schema:Periodical
80 sg:pub.10.1007/s10035-018-0800-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103249468
81 https://doi.org/10.1007/s10035-018-0800-7
82 rdf:type schema:CreativeWork
83 https://doi.org/10.1016/0022-5096(72)90029-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003463588
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1016/j.apt.2010.04.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019991791
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1016/j.fusengdes.2010.05.042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026665452
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1016/j.fusengdes.2012.02.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042835204
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1016/j.ijsolstr.2014.06.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044813796
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1016/j.jmps.2009.10.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019790233
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1016/j.nme.2016.03.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017345095
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1016/j.powtec.2015.03.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036237278
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1103/physreve.51.6177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060718023
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1103/physreve.57.3164 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023750371
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1103/physreve.63.011302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060726179
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1103/physreve.98.012905 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105752045
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1103/physrevlett.77.274 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060813947
108 rdf:type schema:CreativeWork
109 https://doi.org/10.14356/kona.1997012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032019110
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1680/geot.1979.29.1.47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068209785
112 rdf:type schema:CreativeWork
113 https://www.grid.ac/institutes/grid.417969.4 schema:alternateName Indian Institute of Technology Madras
114 schema:name Mechanics of Materials Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Madras, 600036, Chennai, India
115 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...