Modes of wall induced granular crystallisation in vibrational packing View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-05

AUTHORS

Weijing Dai, Joerg Reimann, Dorian Hanaor, Claudio Ferrero, Yixiang Gan

ABSTRACT

Granular crystallisation is an important phenomenon whereby ordered packing structures form in granular matter under vibration. However, compared with the well-developed principles of crystallisation at the atomic scale, crystallisation in granular matter remains relatively poorly understood. To investigate this behaviour further and bridge the fields of granular matter and materials science, we simulated mono-dispersed spheres confined in cylindrical containers to study their structural dynamics during vibration. By applying adequate vibration, disorder-to-order transitions were induced. Such transitions were characterised at the particle scale through bond orientation order parameters. As a result, emergent crystallisation was indicated by the enhancement of the local order of individual particles and the number of ordered particles. The observed heterogeneous crystallisation was characterised by the evolution of the spatial distributions via coarse-graining the order index. Crystalline regimes epitaxially grew from templates formed near the container walls during vibration, here termed the wall effect. By varying the geometrical dimensions of cylindrical containers, the obtained crystallised structures were found to differ at the cylindrical wall zone and the planar bottom wall zone. The formed packing structures were quantitatively compared to X-ray tomography results using again these order parameters. The findings here provide a microscopic perspective for developing laws governing structural dynamics in granular matter. More... »

PAGES

26

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10035-019-0876-8

DOI

http://dx.doi.org/10.1007/s10035-019-0876-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112731654


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0905", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Civil Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Sydney", 
          "id": "https://www.grid.ac/institutes/grid.1013.3", 
          "name": [
            "School of Civil Engineering, The University of Sydney, 2006, Sydney, NSW, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dai", 
        "givenName": "Weijing", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Karlsruhe Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.7892.4", 
          "name": [
            "Karlsruhe Institute of Technology, P.O. Box 3640, 76021, Karlsruhe, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Reimann", 
        "givenName": "Joerg", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University of Berlin", 
          "id": "https://www.grid.ac/institutes/grid.6734.6", 
          "name": [
            "Fachgebiet Keramische Werkstoffe, Technische Universit\u00e4t Berlin, Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hanaor", 
        "givenName": "Dorian", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "European Synchrotron Radiation Facility", 
          "id": "https://www.grid.ac/institutes/grid.5398.7", 
          "name": [
            "ESRF-The European Synchrotron, Grenoble, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ferrero", 
        "givenName": "Claudio", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Sydney", 
          "id": "https://www.grid.ac/institutes/grid.1013.3", 
          "name": [
            "School of Civil Engineering, The University of Sydney, 2006, Sydney, NSW, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gan", 
        "givenName": "Yixiang", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.powtec.2007.09.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000418644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mser.2008.07.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003948771"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fusengdes.2015.05.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004169836"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/fd9960400093", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008560653"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10035-012-0317-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008928326", 
          "https://doi.org/10.1007/s10035-012-0317-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.powtec.2007.12.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012471184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10035-012-0343-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018650216", 
          "https://doi.org/10.1007/s10035-012-0343-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.5.031025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021954172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.5.031025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021954172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.74.021306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022915409"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.74.021306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022915409"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys3006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026665126", 
          "https://doi.org/10.1038/nphys3006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epje/i2012-12113-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027314319", 
          "https://doi.org/10.1140/epje/i2012-12113-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.71.061302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030381530"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.71.061302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030381530"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.71.061302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030381530"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apt.2009.01.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030897840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10035-010-0181-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034529368", 
          "https://doi.org/10.1007/s10035-010-0181-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10035-010-0181-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034529368", 
          "https://doi.org/10.1007/s10035-010-0181-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1300", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036108961", 
          "https://doi.org/10.1038/nmat1300"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1300", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036108961", 
          "https://doi.org/10.1038/nmat1300"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.89.022204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037819129"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.89.022204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037819129"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-4371(97)00236-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043423774"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4953550", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043601700"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep00505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046890719", 
          "https://doi.org/10.1038/srep00505"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10035-016-0662-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049757109", 
          "https://doi.org/10.1007/s10035-016-0662-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10035-016-0662-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049757109", 
          "https://doi.org/10.1007/s10035-016-0662-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ces.2014.12.059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050244589"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.powtec.2008.04.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052756884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cpc.2011.02.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052854930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.869499", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058121656"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.28.784", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060533864"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.28.784", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060533864"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.47.184", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060715065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.47.184", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060715065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.57.1971", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060721966"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.57.1971", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060721966"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.66.041109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060729099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.66.041109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060729099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.78.011302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060737615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.78.011302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060737615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.81.061301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060740612"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.81.061301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060740612"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.89.042401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060746080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.89.042401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060746080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.90.032203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060746609"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.90.032203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060746609"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.91.062202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060747611"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.91.062202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060747611"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.108001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060759500"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.108001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060759500"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.148302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060759604"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.148302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060759604"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.111.148001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060762130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.111.148001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060762130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.67.394", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060803839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.67.394", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060803839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.79.3640", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060816150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.79.3640", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060816150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.89.264302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060825783"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.89.264302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060825783"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.91.104302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060827186"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.91.104302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060827186"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.018001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060830571"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.018001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060830571"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.028002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060830601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.028002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060830601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.205502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060831173"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.205502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060831173"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.265501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060833312"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.265501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060833312"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.71.s374", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.71.s374", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.255.5051.1523", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062543646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1504/pcfd.2012.047457", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067506348"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys4034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083906403", 
          "https://doi.org/10.1038/nphys4034"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys4034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083906403", 
          "https://doi.org/10.1038/nphys4034"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms15082", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085396207", 
          "https://doi.org/10.1038/ncomms15082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.powtec.2017.05.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085584488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.120.055701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100799941"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.120.055701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100799941"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-05", 
    "datePublishedReg": "2019-05-01", 
    "description": "Granular crystallisation is an important phenomenon whereby ordered packing structures form in granular matter under vibration. However, compared with the well-developed principles of crystallisation at the atomic scale, crystallisation in granular matter remains relatively poorly understood. To investigate this behaviour further and bridge the fields of granular matter and materials science, we simulated mono-dispersed spheres confined in cylindrical containers to study their structural dynamics during vibration. By applying adequate vibration, disorder-to-order transitions were induced. Such transitions were characterised at the particle scale through bond orientation order parameters. As a result, emergent crystallisation was indicated by the enhancement of the local order of individual particles and the number of ordered particles. The observed heterogeneous crystallisation was characterised by the evolution of the spatial distributions via coarse-graining the order index. Crystalline regimes epitaxially grew from templates formed near the container walls during vibration, here termed the wall effect. By varying the geometrical dimensions of cylindrical containers, the obtained crystallised structures were found to differ at the cylindrical wall zone and the planar bottom wall zone. The formed packing structures were quantitatively compared to X-ray tomography results using again these order parameters. The findings here provide a microscopic perspective for developing laws governing structural dynamics in granular matter.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10035-019-0876-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1052633", 
        "issn": [
          "1434-5021", 
          "1434-7636"
        ], 
        "name": "Granular Matter", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "21"
      }
    ], 
    "name": "Modes of wall induced granular crystallisation in vibrational packing", 
    "pagination": "26", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "29355d767bf6369e738d3a95dd4284014859860f55dc5c2babb6f056c6cfc3f2"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10035-019-0876-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112731654"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10035-019-0876-8", 
      "https://app.dimensions.ai/details/publication/pub.1112731654"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000358_0000000358/records_127435_00000011.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10035-019-0876-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10035-019-0876-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10035-019-0876-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10035-019-0876-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10035-019-0876-8'


 

This table displays all metadata directly associated to this object as RDF triples.

256 TRIPLES      21 PREDICATES      78 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10035-019-0876-8 schema:about anzsrc-for:09
2 anzsrc-for:0905
3 schema:author N9a60796faa634a4ab4b2a2b983c2a10a
4 schema:citation sg:pub.10.1007/s10035-010-0181-z
5 sg:pub.10.1007/s10035-012-0317-4
6 sg:pub.10.1007/s10035-012-0343-2
7 sg:pub.10.1007/s10035-016-0662-9
8 sg:pub.10.1038/ncomms15082
9 sg:pub.10.1038/nmat1300
10 sg:pub.10.1038/nphys3006
11 sg:pub.10.1038/nphys4034
12 sg:pub.10.1038/srep00505
13 sg:pub.10.1140/epje/i2012-12113-y
14 https://doi.org/10.1016/j.apt.2009.01.003
15 https://doi.org/10.1016/j.ces.2014.12.059
16 https://doi.org/10.1016/j.cpc.2011.02.006
17 https://doi.org/10.1016/j.fusengdes.2015.05.026
18 https://doi.org/10.1016/j.mser.2008.07.001
19 https://doi.org/10.1016/j.powtec.2007.09.015
20 https://doi.org/10.1016/j.powtec.2007.12.002
21 https://doi.org/10.1016/j.powtec.2008.04.001
22 https://doi.org/10.1016/j.powtec.2017.05.033
23 https://doi.org/10.1016/s0378-4371(97)00236-7
24 https://doi.org/10.1039/fd9960400093
25 https://doi.org/10.1063/1.4953550
26 https://doi.org/10.1063/1.869499
27 https://doi.org/10.1103/physrevb.28.784
28 https://doi.org/10.1103/physreve.47.184
29 https://doi.org/10.1103/physreve.57.1971
30 https://doi.org/10.1103/physreve.66.041109
31 https://doi.org/10.1103/physreve.71.061302
32 https://doi.org/10.1103/physreve.74.021306
33 https://doi.org/10.1103/physreve.78.011302
34 https://doi.org/10.1103/physreve.81.061301
35 https://doi.org/10.1103/physreve.89.022204
36 https://doi.org/10.1103/physreve.89.042401
37 https://doi.org/10.1103/physreve.90.032203
38 https://doi.org/10.1103/physreve.91.062202
39 https://doi.org/10.1103/physrevlett.108.108001
40 https://doi.org/10.1103/physrevlett.108.148302
41 https://doi.org/10.1103/physrevlett.111.148001
42 https://doi.org/10.1103/physrevlett.120.055701
43 https://doi.org/10.1103/physrevlett.67.394
44 https://doi.org/10.1103/physrevlett.79.3640
45 https://doi.org/10.1103/physrevlett.89.264302
46 https://doi.org/10.1103/physrevlett.91.104302
47 https://doi.org/10.1103/physrevlett.95.018001
48 https://doi.org/10.1103/physrevlett.95.028002
49 https://doi.org/10.1103/physrevlett.95.205502
50 https://doi.org/10.1103/physrevlett.97.265501
51 https://doi.org/10.1103/physrevx.5.031025
52 https://doi.org/10.1103/revmodphys.71.s374
53 https://doi.org/10.1126/science.255.5051.1523
54 https://doi.org/10.1504/pcfd.2012.047457
55 schema:datePublished 2019-05
56 schema:datePublishedReg 2019-05-01
57 schema:description Granular crystallisation is an important phenomenon whereby ordered packing structures form in granular matter under vibration. However, compared with the well-developed principles of crystallisation at the atomic scale, crystallisation in granular matter remains relatively poorly understood. To investigate this behaviour further and bridge the fields of granular matter and materials science, we simulated mono-dispersed spheres confined in cylindrical containers to study their structural dynamics during vibration. By applying adequate vibration, disorder-to-order transitions were induced. Such transitions were characterised at the particle scale through bond orientation order parameters. As a result, emergent crystallisation was indicated by the enhancement of the local order of individual particles and the number of ordered particles. The observed heterogeneous crystallisation was characterised by the evolution of the spatial distributions via coarse-graining the order index. Crystalline regimes epitaxially grew from templates formed near the container walls during vibration, here termed the wall effect. By varying the geometrical dimensions of cylindrical containers, the obtained crystallised structures were found to differ at the cylindrical wall zone and the planar bottom wall zone. The formed packing structures were quantitatively compared to X-ray tomography results using again these order parameters. The findings here provide a microscopic perspective for developing laws governing structural dynamics in granular matter.
58 schema:genre research_article
59 schema:inLanguage en
60 schema:isAccessibleForFree false
61 schema:isPartOf Nd828b169a19f41f28bd520e5bf467374
62 Neb1ab815b2d644f886b0ed80b4c08835
63 sg:journal.1052633
64 schema:name Modes of wall induced granular crystallisation in vibrational packing
65 schema:pagination 26
66 schema:productId N2c9585633d0a4ff6b858e63db9143c9b
67 N8222d563dffa4ab3a9ea4f14d7c471da
68 Ne040704ad4f54da8aa7fef6c29a5b925
69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112731654
70 https://doi.org/10.1007/s10035-019-0876-8
71 schema:sdDatePublished 2019-04-11T11:39
72 schema:sdLicense https://scigraph.springernature.com/explorer/license/
73 schema:sdPublisher N57c549829a7346fbb465934aa3781780
74 schema:url https://link.springer.com/10.1007%2Fs10035-019-0876-8
75 sgo:license sg:explorer/license/
76 sgo:sdDataset articles
77 rdf:type schema:ScholarlyArticle
78 N0fee5e59ca244e268093cc31bc88124e rdf:first N47cd2cb3dbe34bf688e79457843701e8
79 rdf:rest rdf:nil
80 N14ea1036fbd74fc2bf4706850d72e7ae schema:affiliation https://www.grid.ac/institutes/grid.5398.7
81 schema:familyName Ferrero
82 schema:givenName Claudio
83 rdf:type schema:Person
84 N1ecae3b73d5d495e94a29e919419ca7f schema:affiliation https://www.grid.ac/institutes/grid.7892.4
85 schema:familyName Reimann
86 schema:givenName Joerg
87 rdf:type schema:Person
88 N2c9585633d0a4ff6b858e63db9143c9b schema:name readcube_id
89 schema:value 29355d767bf6369e738d3a95dd4284014859860f55dc5c2babb6f056c6cfc3f2
90 rdf:type schema:PropertyValue
91 N405eb00fd3a7420088071f499734277e rdf:first Nf9dd48e392994eb4b4880cf724724628
92 rdf:rest Nf163ff6dab144e539630ce8fa0089bef
93 N47cd2cb3dbe34bf688e79457843701e8 schema:affiliation https://www.grid.ac/institutes/grid.1013.3
94 schema:familyName Gan
95 schema:givenName Yixiang
96 rdf:type schema:Person
97 N57c549829a7346fbb465934aa3781780 schema:name Springer Nature - SN SciGraph project
98 rdf:type schema:Organization
99 N7f6dacc9fb7c4a41aae438710b4205dd schema:affiliation https://www.grid.ac/institutes/grid.1013.3
100 schema:familyName Dai
101 schema:givenName Weijing
102 rdf:type schema:Person
103 N8222d563dffa4ab3a9ea4f14d7c471da schema:name doi
104 schema:value 10.1007/s10035-019-0876-8
105 rdf:type schema:PropertyValue
106 N9a60796faa634a4ab4b2a2b983c2a10a rdf:first N7f6dacc9fb7c4a41aae438710b4205dd
107 rdf:rest Nf255c8a559024da4a56e0e8786060bfd
108 Nd828b169a19f41f28bd520e5bf467374 schema:issueNumber 2
109 rdf:type schema:PublicationIssue
110 Ne040704ad4f54da8aa7fef6c29a5b925 schema:name dimensions_id
111 schema:value pub.1112731654
112 rdf:type schema:PropertyValue
113 Neb1ab815b2d644f886b0ed80b4c08835 schema:volumeNumber 21
114 rdf:type schema:PublicationVolume
115 Nf163ff6dab144e539630ce8fa0089bef rdf:first N14ea1036fbd74fc2bf4706850d72e7ae
116 rdf:rest N0fee5e59ca244e268093cc31bc88124e
117 Nf255c8a559024da4a56e0e8786060bfd rdf:first N1ecae3b73d5d495e94a29e919419ca7f
118 rdf:rest N405eb00fd3a7420088071f499734277e
119 Nf9dd48e392994eb4b4880cf724724628 schema:affiliation https://www.grid.ac/institutes/grid.6734.6
120 schema:familyName Hanaor
121 schema:givenName Dorian
122 rdf:type schema:Person
123 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
124 schema:name Engineering
125 rdf:type schema:DefinedTerm
126 anzsrc-for:0905 schema:inDefinedTermSet anzsrc-for:
127 schema:name Civil Engineering
128 rdf:type schema:DefinedTerm
129 sg:journal.1052633 schema:issn 1434-5021
130 1434-7636
131 schema:name Granular Matter
132 rdf:type schema:Periodical
133 sg:pub.10.1007/s10035-010-0181-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1034529368
134 https://doi.org/10.1007/s10035-010-0181-z
135 rdf:type schema:CreativeWork
136 sg:pub.10.1007/s10035-012-0317-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008928326
137 https://doi.org/10.1007/s10035-012-0317-4
138 rdf:type schema:CreativeWork
139 sg:pub.10.1007/s10035-012-0343-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018650216
140 https://doi.org/10.1007/s10035-012-0343-2
141 rdf:type schema:CreativeWork
142 sg:pub.10.1007/s10035-016-0662-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049757109
143 https://doi.org/10.1007/s10035-016-0662-9
144 rdf:type schema:CreativeWork
145 sg:pub.10.1038/ncomms15082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085396207
146 https://doi.org/10.1038/ncomms15082
147 rdf:type schema:CreativeWork
148 sg:pub.10.1038/nmat1300 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036108961
149 https://doi.org/10.1038/nmat1300
150 rdf:type schema:CreativeWork
151 sg:pub.10.1038/nphys3006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026665126
152 https://doi.org/10.1038/nphys3006
153 rdf:type schema:CreativeWork
154 sg:pub.10.1038/nphys4034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083906403
155 https://doi.org/10.1038/nphys4034
156 rdf:type schema:CreativeWork
157 sg:pub.10.1038/srep00505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046890719
158 https://doi.org/10.1038/srep00505
159 rdf:type schema:CreativeWork
160 sg:pub.10.1140/epje/i2012-12113-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1027314319
161 https://doi.org/10.1140/epje/i2012-12113-y
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/j.apt.2009.01.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030897840
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.ces.2014.12.059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050244589
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/j.cpc.2011.02.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052854930
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/j.fusengdes.2015.05.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004169836
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/j.mser.2008.07.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003948771
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/j.powtec.2007.09.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000418644
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.powtec.2007.12.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012471184
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.powtec.2008.04.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052756884
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.powtec.2017.05.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085584488
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/s0378-4371(97)00236-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043423774
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1039/fd9960400093 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008560653
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1063/1.4953550 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043601700
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1063/1.869499 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058121656
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1103/physrevb.28.784 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060533864
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1103/physreve.47.184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060715065
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1103/physreve.57.1971 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060721966
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1103/physreve.66.041109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060729099
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1103/physreve.71.061302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030381530
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1103/physreve.74.021306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022915409
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1103/physreve.78.011302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060737615
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1103/physreve.81.061301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060740612
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1103/physreve.89.022204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037819129
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1103/physreve.89.042401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060746080
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1103/physreve.90.032203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060746609
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1103/physreve.91.062202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060747611
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1103/physrevlett.108.108001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060759500
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1103/physrevlett.108.148302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060759604
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1103/physrevlett.111.148001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060762130
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1103/physrevlett.120.055701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100799941
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1103/physrevlett.67.394 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060803839
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1103/physrevlett.79.3640 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060816150
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1103/physrevlett.89.264302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060825783
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1103/physrevlett.91.104302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060827186
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1103/physrevlett.95.018001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060830571
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1103/physrevlett.95.028002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060830601
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1103/physrevlett.95.205502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060831173
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1103/physrevlett.97.265501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060833312
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1103/physrevx.5.031025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021954172
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1103/revmodphys.71.s374 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839491
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1126/science.255.5051.1523 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062543646
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1504/pcfd.2012.047457 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067506348
244 rdf:type schema:CreativeWork
245 https://www.grid.ac/institutes/grid.1013.3 schema:alternateName University of Sydney
246 schema:name School of Civil Engineering, The University of Sydney, 2006, Sydney, NSW, Australia
247 rdf:type schema:Organization
248 https://www.grid.ac/institutes/grid.5398.7 schema:alternateName European Synchrotron Radiation Facility
249 schema:name ESRF-The European Synchrotron, Grenoble, France
250 rdf:type schema:Organization
251 https://www.grid.ac/institutes/grid.6734.6 schema:alternateName Technical University of Berlin
252 schema:name Fachgebiet Keramische Werkstoffe, Technische Universität Berlin, Berlin, Germany
253 rdf:type schema:Organization
254 https://www.grid.ac/institutes/grid.7892.4 schema:alternateName Karlsruhe Institute of Technology
255 schema:name Karlsruhe Institute of Technology, P.O. Box 3640, 76021, Karlsruhe, Germany
256 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...