Combined 3D thinning and greedy algorithm to approximate realistic particles with corrected mechanical properties View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-05

AUTHORS

Fei-Liang Yuan

ABSTRACT

The shape of irregular particles has significant influence on micro- and macro-scopic behaviour of granular systems. This paper presents a combined 3D thinning and greedy set-covering algorithm to approximate realistic particles with a clump of overlapping spheres for discrete element method simulations. First, the particle medial surface (or surface skeleton), from which all candidate (maximal inscribed) spheres can be generated, is computed by the topological 3D thinning. Then, the clump generation procedure is converted into a greedy set-covering problem. To correct the mass distribution due to highly overlapped spheres inside the clump, linear programming is used to adjust the density of each component sphere, such that the aggregate properties mass, center of mass and inertia tensor are identical or close enough to the prototypical particle. In order to find the optimal approximation accuracy (volume coverage: ratio of clump’s volume to the original particle’s volume), particle flow of 3 different shapes in a rotating drum are conducted. It was observed that the dynamic angle of repose starts to converge for all particle shapes at 85% volume coverage (spheres per clump <30), which implies the possible optimal resolution to capture the mechanical behaviour of the system. More... »

PAGES

19

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10035-019-0874-x

DOI

http://dx.doi.org/10.1007/s10035-019-0874-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112438999


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0914", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Resources Engineering and Extractive Metallurgy", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Freiberg University Of Mining And Technology", 
          "id": "https://www.grid.ac/institutes/grid.6862.a", 
          "name": [
            "TU Bergakademie Freiberg, Freiberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yuan", 
        "givenName": "Fei-Liang", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.dam.2016.03.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000041690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1108/02644400410519730", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002110114"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.powtec.2013.11.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002274850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.powtec.2016.10.072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002526277"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.powtec.2012.03.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003148844"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.powtec.2015.08.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003401411"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/966131.966132", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005125816"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.powtec.2011.01.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009875844"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/cgf.12865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009949483"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ces.2014.11.050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011544397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ces.2012.05.041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012031569"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.powtec.2015.02.046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013804065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/nme.5275", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013960867"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.partic.2015.01.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014736161"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10035-009-0133-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016884409", 
          "https://doi.org/10.1007/s10035-009-0133-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10035-009-0133-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016884409", 
          "https://doi.org/10.1007/s10035-009-0133-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10035-009-0133-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016884409", 
          "https://doi.org/10.1007/s10035-009-0133-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/231731.231732", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016954699"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.powtec.2012.03.041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021717815"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compgeo.2004.08.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023548130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10035-012-0381-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025569450", 
          "https://doi.org/10.1007/s10035-012-0381-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmps.2016.02.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026066073"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10851-012-0402-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029315475", 
          "https://doi.org/10.1007/s10851-012-0402-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10867651.1999.10487502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029752970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-211-99178-7_10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033167225", 
          "https://doi.org/10.1007/978-3-211-99178-7_10"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-211-99178-7_10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033167225", 
          "https://doi.org/10.1007/978-3-211-99178-7_10"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jcph.1995.1039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034822855"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ces.2009.04.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035038073"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.conbuildmat.2005.08.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035593412"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.conbuildmat.2005.08.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035593412"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cad.2012.10.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036270679"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ces.2007.11.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039512566"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ces.2006.08.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039843337"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40571-016-0131-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039863751", 
          "https://doi.org/10.1007/s40571-016-0131-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40571-016-0131-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039863751", 
          "https://doi.org/10.1007/s40571-016-0131-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.198304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040944204"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.198304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040944204"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10035-010-0205-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046491191", 
          "https://doi.org/10.1007/s10035-010-0205-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10035-010-0205-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046491191", 
          "https://doi.org/10.1007/s10035-010-0205-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0031-3203(78)90025-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047181784"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0031-3203(78)90025-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047181784"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jqsrt.2015.11.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047581711"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jqsrt.2015.11.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047581711"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40571-015-0065-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048873952", 
          "https://doi.org/10.1007/s40571-015-0065-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0148-9062(88)92293-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048889673"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0148-9062(88)92293-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048889673"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ces.2014.12.059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050244589"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40571-014-0019-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052438686", 
          "https://doi.org/10.1007/s40571-014-0019-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.85.051307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060743416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.85.051307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060743416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/56.2083", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061189917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1504/pcfd.2012.047457", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067506348"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1680/geot.1979.29.1.47", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068209785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1680/geot.8.t.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068212132"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compstruc.2017.02.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084820377"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/epjconf/201714006004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090314494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.coastaleng.2017.08.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091224446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/3072959.3083724", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103542723"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-05", 
    "datePublishedReg": "2019-05-01", 
    "description": "The shape of irregular particles has significant influence on micro- and macro-scopic behaviour of granular systems. This paper presents a combined 3D thinning and greedy set-covering algorithm to approximate realistic particles with a clump of overlapping spheres for discrete element method simulations. First, the particle medial surface (or surface skeleton), from which all candidate (maximal inscribed) spheres can be generated, is computed by the topological 3D thinning. Then, the clump generation procedure is converted into a greedy set-covering problem. To correct the mass distribution due to highly overlapped spheres inside the clump, linear programming is used to adjust the density of each component sphere, such that the aggregate properties mass, center of mass and inertia tensor are identical or close enough to the prototypical particle. In order to find the optimal approximation accuracy (volume coverage: ratio of clump\u2019s volume to the original particle\u2019s volume), particle flow of 3 different shapes in a rotating drum are conducted. It was observed that the dynamic angle of repose starts to converge for all particle shapes at 85% volume coverage (spheres per clump <30), which implies the possible optimal resolution to capture the mechanical behaviour of the system.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10035-019-0874-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1052633", 
        "issn": [
          "1434-5021", 
          "1434-7636"
        ], 
        "name": "Granular Matter", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "21"
      }
    ], 
    "name": "Combined 3D thinning and greedy algorithm to approximate realistic particles with corrected mechanical properties", 
    "pagination": "19", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a48c6f1e4a74bfe9a3d7713b401596674db8f7653b8a31c817e417a46e26b64b"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10035-019-0874-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112438999"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10035-019-0874-x", 
      "https://app.dimensions.ai/details/publication/pub.1112438999"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000348_0000000348/records_54328_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10035-019-0874-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10035-019-0874-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10035-019-0874-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10035-019-0874-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10035-019-0874-x'


 

This table displays all metadata directly associated to this object as RDF triples.

209 TRIPLES      21 PREDICATES      74 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10035-019-0874-x schema:about anzsrc-for:09
2 anzsrc-for:0914
3 schema:author N1de9fe9a209347ce9d337ddd8ff0a2e5
4 schema:citation sg:pub.10.1007/978-3-211-99178-7_10
5 sg:pub.10.1007/s10035-009-0133-7
6 sg:pub.10.1007/s10035-010-0205-8
7 sg:pub.10.1007/s10035-012-0381-9
8 sg:pub.10.1007/s10851-012-0402-7
9 sg:pub.10.1007/s40571-014-0019-2
10 sg:pub.10.1007/s40571-015-0065-4
11 sg:pub.10.1007/s40571-016-0131-6
12 https://doi.org/10.1002/nme.5275
13 https://doi.org/10.1006/jcph.1995.1039
14 https://doi.org/10.1016/0031-3203(78)90025-0
15 https://doi.org/10.1016/0148-9062(88)92293-0
16 https://doi.org/10.1016/j.cad.2012.10.032
17 https://doi.org/10.1016/j.ces.2006.08.014
18 https://doi.org/10.1016/j.ces.2007.11.025
19 https://doi.org/10.1016/j.ces.2009.04.025
20 https://doi.org/10.1016/j.ces.2012.05.041
21 https://doi.org/10.1016/j.ces.2014.11.050
22 https://doi.org/10.1016/j.ces.2014.12.059
23 https://doi.org/10.1016/j.coastaleng.2017.08.004
24 https://doi.org/10.1016/j.compgeo.2004.08.002
25 https://doi.org/10.1016/j.compstruc.2017.02.002
26 https://doi.org/10.1016/j.conbuildmat.2005.08.013
27 https://doi.org/10.1016/j.dam.2016.03.012
28 https://doi.org/10.1016/j.jmps.2016.02.021
29 https://doi.org/10.1016/j.jqsrt.2015.11.020
30 https://doi.org/10.1016/j.partic.2015.01.008
31 https://doi.org/10.1016/j.powtec.2011.01.003
32 https://doi.org/10.1016/j.powtec.2012.03.023
33 https://doi.org/10.1016/j.powtec.2012.03.041
34 https://doi.org/10.1016/j.powtec.2013.11.023
35 https://doi.org/10.1016/j.powtec.2015.02.046
36 https://doi.org/10.1016/j.powtec.2015.08.026
37 https://doi.org/10.1016/j.powtec.2016.10.072
38 https://doi.org/10.1051/epjconf/201714006004
39 https://doi.org/10.1080/10867651.1999.10487502
40 https://doi.org/10.1103/physreve.85.051307
41 https://doi.org/10.1103/physrevlett.108.198304
42 https://doi.org/10.1108/02644400410519730
43 https://doi.org/10.1109/56.2083
44 https://doi.org/10.1111/cgf.12865
45 https://doi.org/10.1145/231731.231732
46 https://doi.org/10.1145/3072959.3083724
47 https://doi.org/10.1145/966131.966132
48 https://doi.org/10.1504/pcfd.2012.047457
49 https://doi.org/10.1680/geot.1979.29.1.47
50 https://doi.org/10.1680/geot.8.t.037
51 schema:datePublished 2019-05
52 schema:datePublishedReg 2019-05-01
53 schema:description The shape of irregular particles has significant influence on micro- and macro-scopic behaviour of granular systems. This paper presents a combined 3D thinning and greedy set-covering algorithm to approximate realistic particles with a clump of overlapping spheres for discrete element method simulations. First, the particle medial surface (or surface skeleton), from which all candidate (maximal inscribed) spheres can be generated, is computed by the topological 3D thinning. Then, the clump generation procedure is converted into a greedy set-covering problem. To correct the mass distribution due to highly overlapped spheres inside the clump, linear programming is used to adjust the density of each component sphere, such that the aggregate properties mass, center of mass and inertia tensor are identical or close enough to the prototypical particle. In order to find the optimal approximation accuracy (volume coverage: ratio of clump’s volume to the original particle’s volume), particle flow of 3 different shapes in a rotating drum are conducted. It was observed that the dynamic angle of repose starts to converge for all particle shapes at 85% volume coverage (spheres per clump <30), which implies the possible optimal resolution to capture the mechanical behaviour of the system.
54 schema:genre research_article
55 schema:inLanguage en
56 schema:isAccessibleForFree false
57 schema:isPartOf N79b18480c9574e7dbf6a78b641fe3837
58 Nafc45b83406647fc9cfbc7e64b626042
59 sg:journal.1052633
60 schema:name Combined 3D thinning and greedy algorithm to approximate realistic particles with corrected mechanical properties
61 schema:pagination 19
62 schema:productId N374b9f4328814cb0823991b6858f5f2f
63 N9d3f42def8114d6d9bad5e9250dabbb7
64 Nd161b7a4717e47ea93a712b6a968c604
65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112438999
66 https://doi.org/10.1007/s10035-019-0874-x
67 schema:sdDatePublished 2019-04-11T10:20
68 schema:sdLicense https://scigraph.springernature.com/explorer/license/
69 schema:sdPublisher Ncf999441481f4f5ea94dc1b0a55cae95
70 schema:url https://link.springer.com/10.1007%2Fs10035-019-0874-x
71 sgo:license sg:explorer/license/
72 sgo:sdDataset articles
73 rdf:type schema:ScholarlyArticle
74 N1de9fe9a209347ce9d337ddd8ff0a2e5 rdf:first N87481b516d0345d4a56a5bca16938bb0
75 rdf:rest rdf:nil
76 N374b9f4328814cb0823991b6858f5f2f schema:name readcube_id
77 schema:value a48c6f1e4a74bfe9a3d7713b401596674db8f7653b8a31c817e417a46e26b64b
78 rdf:type schema:PropertyValue
79 N79b18480c9574e7dbf6a78b641fe3837 schema:issueNumber 2
80 rdf:type schema:PublicationIssue
81 N87481b516d0345d4a56a5bca16938bb0 schema:affiliation https://www.grid.ac/institutes/grid.6862.a
82 schema:familyName Yuan
83 schema:givenName Fei-Liang
84 rdf:type schema:Person
85 N9d3f42def8114d6d9bad5e9250dabbb7 schema:name dimensions_id
86 schema:value pub.1112438999
87 rdf:type schema:PropertyValue
88 Nafc45b83406647fc9cfbc7e64b626042 schema:volumeNumber 21
89 rdf:type schema:PublicationVolume
90 Ncf999441481f4f5ea94dc1b0a55cae95 schema:name Springer Nature - SN SciGraph project
91 rdf:type schema:Organization
92 Nd161b7a4717e47ea93a712b6a968c604 schema:name doi
93 schema:value 10.1007/s10035-019-0874-x
94 rdf:type schema:PropertyValue
95 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
96 schema:name Engineering
97 rdf:type schema:DefinedTerm
98 anzsrc-for:0914 schema:inDefinedTermSet anzsrc-for:
99 schema:name Resources Engineering and Extractive Metallurgy
100 rdf:type schema:DefinedTerm
101 sg:journal.1052633 schema:issn 1434-5021
102 1434-7636
103 schema:name Granular Matter
104 rdf:type schema:Periodical
105 sg:pub.10.1007/978-3-211-99178-7_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033167225
106 https://doi.org/10.1007/978-3-211-99178-7_10
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/s10035-009-0133-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016884409
109 https://doi.org/10.1007/s10035-009-0133-7
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/s10035-010-0205-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046491191
112 https://doi.org/10.1007/s10035-010-0205-8
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/s10035-012-0381-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025569450
115 https://doi.org/10.1007/s10035-012-0381-9
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/s10851-012-0402-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029315475
118 https://doi.org/10.1007/s10851-012-0402-7
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/s40571-014-0019-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052438686
121 https://doi.org/10.1007/s40571-014-0019-2
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/s40571-015-0065-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048873952
124 https://doi.org/10.1007/s40571-015-0065-4
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/s40571-016-0131-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039863751
127 https://doi.org/10.1007/s40571-016-0131-6
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1002/nme.5275 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013960867
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1006/jcph.1995.1039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034822855
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/0031-3203(78)90025-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047181784
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/0148-9062(88)92293-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048889673
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.cad.2012.10.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036270679
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.ces.2006.08.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039843337
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.ces.2007.11.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039512566
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.ces.2009.04.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035038073
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.ces.2012.05.041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012031569
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.ces.2014.11.050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011544397
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.ces.2014.12.059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050244589
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.coastaleng.2017.08.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091224446
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.compgeo.2004.08.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023548130
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.compstruc.2017.02.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084820377
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.conbuildmat.2005.08.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035593412
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.dam.2016.03.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000041690
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.jmps.2016.02.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026066073
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/j.jqsrt.2015.11.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047581711
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.partic.2015.01.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014736161
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/j.powtec.2011.01.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009875844
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/j.powtec.2012.03.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003148844
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/j.powtec.2012.03.041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021717815
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/j.powtec.2013.11.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002274850
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.powtec.2015.02.046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013804065
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.powtec.2015.08.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003401411
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.powtec.2016.10.072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002526277
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1051/epjconf/201714006004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090314494
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1080/10867651.1999.10487502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029752970
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1103/physreve.85.051307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060743416
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1103/physrevlett.108.198304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040944204
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1108/02644400410519730 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002110114
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1109/56.2083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061189917
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1111/cgf.12865 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009949483
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1145/231731.231732 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016954699
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1145/3072959.3083724 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103542723
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1145/966131.966132 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005125816
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1504/pcfd.2012.047457 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067506348
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1680/geot.1979.29.1.47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068209785
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1680/geot.8.t.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068212132
206 rdf:type schema:CreativeWork
207 https://www.grid.ac/institutes/grid.6862.a schema:alternateName Freiberg University Of Mining And Technology
208 schema:name TU Bergakademie Freiberg, Freiberg, Germany
209 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...