Quantitative structural analysis of simulated granular packings of non-spherical particles View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-08

AUTHORS

Ole Stenzel, Martin Salzer, Volker Schmidt, Paul W. Cleary, Gary W. Delaney

ABSTRACT

A set of computationally generated granular packings of frictionless grains is statistically analyzed using tools from stochastic geometry. We consider both the graph of the solid phase (formed using the particle mid-points) and the pore-phase. Structural characteristics rooted in the analysis of random point processes are seen to yield valuable insights into the underlying structure of granular systems. The graph of the solid phase is analyzed using traditional measures such as edge length and coordination number, as well as more instructive measures of the overall transport properties such as geometric tortuosity, where significant differences are observed in the windedness of paths through the different particle graphs considered. In contrast, the distributions of pore-phase characteristics have a similar shape for all considered granular packings. Interestingly, it is found that prolate and oblate ellipsoid packings show a striking similarity between their solid-phase graphs as well as between their pore-phase graphs. More... »

PAGES

457-468

References to SciGraph publications

Journal

TITLE

Granular Matter

ISSUE

4

VOLUME

16

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10035-014-0486-4

DOI

http://dx.doi.org/10.1007/s10035-014-0486-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1032137790


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Ulm", 
          "id": "https://www.grid.ac/institutes/grid.6582.9", 
          "name": [
            "Institute of Stochastics, Ulm University, Ulm, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stenzel", 
        "givenName": "Ole", 
        "id": "sg:person.0755640733.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0755640733.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Ulm", 
          "id": "https://www.grid.ac/institutes/grid.6582.9", 
          "name": [
            "Institute of Stochastics, Ulm University, Ulm, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Salzer", 
        "givenName": "Martin", 
        "id": "sg:person.011600216416.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011600216416.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Ulm", 
          "id": "https://www.grid.ac/institutes/grid.6582.9", 
          "name": [
            "Institute of Stochastics, Ulm University, Ulm, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schmidt", 
        "givenName": "Volker", 
        "id": "sg:person.01051347101.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051347101.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "CSIRO Computational Informatics, 3169, Clayton South, VIC, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cleary", 
        "givenName": "Paul W.", 
        "id": "sg:person.015716106144.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015716106144.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "CSIRO Computational Informatics, 3169, Clayton South, VIC, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Delaney", 
        "givenName": "Gary W.", 
        "id": "sg:person.012510741033.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012510741033.04"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1126/science.1093010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001113627"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10853-012-6968-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002620559", 
          "https://doi.org/10.1007/s10853-012-6968-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b927490a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007003483"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b927490a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007003483"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.commatsci.2012.08.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008095558"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/09500830500080763", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012264875"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.commatsci.2011.06.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015381476"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.commatsci.2012.02.038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018426840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.111.028001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021414331"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.111.028001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021414331"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2818.2009.03348.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021765281"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2818.2009.03348.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021765281"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.powtec.2007.06.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022261021"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1220869", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027075895"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/188910a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028707571", 
          "https://doi.org/10.1038/188910a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ppsc.200600974", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030860188"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3276799", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031831639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0892-6875(98)00093-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034669574"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01025983", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039523349", 
          "https://doi.org/10.1007/bf01025983"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.85.041301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043190280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.85.041301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043190280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/23819", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048809826", 
          "https://doi.org/10.1038/23819"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/23819", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048809826", 
          "https://doi.org/10.1038/23819"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/1.3222737", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050470710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-19630-0_9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050953132", 
          "https://doi.org/10.1007/978-3-642-19630-0_9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-19630-0_9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050953132", 
          "https://doi.org/10.1007/978-3-642-19630-0_9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.86.184202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060640328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.86.184202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060640328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.67.051301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060730002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.67.051301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060730002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.83.051305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060741822"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.83.051305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060741822"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.68.1259", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839364"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.68.1259", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839364"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.71.435", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839451"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.71.435", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839451"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmi.2006.880670", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061694909"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/0295-5075/89/34002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064232853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1504/pcfd.2012.047460", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067506351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1680/geot.1979.29.1.47", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068209785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5566/ias.v31.p27-42", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072988832"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4812063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098550950"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1887/0750306483", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099106292"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-08", 
    "datePublishedReg": "2014-08-01", 
    "description": "A set of computationally generated granular packings of frictionless grains is statistically analyzed using tools from stochastic geometry. We consider both the graph of the solid phase (formed using the particle mid-points) and the pore-phase. Structural characteristics rooted in the analysis of random point processes are seen to yield valuable insights into the underlying structure of granular systems. The graph of the solid phase is analyzed using traditional measures such as edge length and coordination number, as well as more instructive measures of the overall transport properties such as geometric tortuosity, where significant differences are observed in the windedness of paths through the different particle graphs considered. In contrast, the distributions of pore-phase characteristics have a similar shape for all considered granular packings. Interestingly, it is found that prolate and oblate ellipsoid packings show a striking similarity between their solid-phase graphs as well as between their pore-phase graphs.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10035-014-0486-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1052633", 
        "issn": [
          "1434-5021", 
          "1434-7636"
        ], 
        "name": "Granular Matter", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "16"
      }
    ], 
    "name": "Quantitative structural analysis of simulated granular packings of non-spherical particles", 
    "pagination": "457-468", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "99193657280ffb1db59ad3e1d3a42e00db53d37f6451cf8e5c53e25dea8f2eda"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10035-014-0486-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1032137790"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10035-014-0486-4", 
      "https://app.dimensions.ai/details/publication/pub.1032137790"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T17:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000513.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10035-014-0486-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10035-014-0486-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10035-014-0486-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10035-014-0486-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10035-014-0486-4'


 

This table displays all metadata directly associated to this object as RDF triples.

194 TRIPLES      21 PREDICATES      59 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10035-014-0486-4 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N3bbb0b1d72ea4da5bfd8c19b71652275
4 schema:citation sg:pub.10.1007/978-3-642-19630-0_9
5 sg:pub.10.1007/bf01025983
6 sg:pub.10.1007/s10853-012-6968-z
7 sg:pub.10.1038/188910a0
8 sg:pub.10.1038/23819
9 https://doi.org/10.1002/ppsc.200600974
10 https://doi.org/10.1016/j.commatsci.2011.06.031
11 https://doi.org/10.1016/j.commatsci.2012.02.038
12 https://doi.org/10.1016/j.commatsci.2012.08.030
13 https://doi.org/10.1016/j.powtec.2007.06.018
14 https://doi.org/10.1016/s0892-6875(98)00093-4
15 https://doi.org/10.1039/b927490a
16 https://doi.org/10.1063/1.3276799
17 https://doi.org/10.1063/1.4812063
18 https://doi.org/10.1080/09500830500080763
19 https://doi.org/10.1103/physrevb.86.184202
20 https://doi.org/10.1103/physreve.67.051301
21 https://doi.org/10.1103/physreve.83.051305
22 https://doi.org/10.1103/physreve.85.041301
23 https://doi.org/10.1103/physrevlett.111.028001
24 https://doi.org/10.1103/revmodphys.68.1259
25 https://doi.org/10.1103/revmodphys.71.435
26 https://doi.org/10.1109/tmi.2006.880670
27 https://doi.org/10.1111/j.1365-2818.2009.03348.x
28 https://doi.org/10.1126/science.1093010
29 https://doi.org/10.1126/science.1220869
30 https://doi.org/10.1149/1.3222737
31 https://doi.org/10.1209/0295-5075/89/34002
32 https://doi.org/10.1504/pcfd.2012.047460
33 https://doi.org/10.1680/geot.1979.29.1.47
34 https://doi.org/10.1887/0750306483
35 https://doi.org/10.5566/ias.v31.p27-42
36 schema:datePublished 2014-08
37 schema:datePublishedReg 2014-08-01
38 schema:description A set of computationally generated granular packings of frictionless grains is statistically analyzed using tools from stochastic geometry. We consider both the graph of the solid phase (formed using the particle mid-points) and the pore-phase. Structural characteristics rooted in the analysis of random point processes are seen to yield valuable insights into the underlying structure of granular systems. The graph of the solid phase is analyzed using traditional measures such as edge length and coordination number, as well as more instructive measures of the overall transport properties such as geometric tortuosity, where significant differences are observed in the windedness of paths through the different particle graphs considered. In contrast, the distributions of pore-phase characteristics have a similar shape for all considered granular packings. Interestingly, it is found that prolate and oblate ellipsoid packings show a striking similarity between their solid-phase graphs as well as between their pore-phase graphs.
39 schema:genre research_article
40 schema:inLanguage en
41 schema:isAccessibleForFree false
42 schema:isPartOf N9d0c6fd0831d460db900ff011a9c6108
43 Na076a95b34b44bbc872099103e3a8c9b
44 sg:journal.1052633
45 schema:name Quantitative structural analysis of simulated granular packings of non-spherical particles
46 schema:pagination 457-468
47 schema:productId N7afcacbde74f40dfa22242fc529722dc
48 Nc91552716acd4a1aa7a4abe7e65b3d27
49 Nce93bb2d6efe4651ae8af435957d229d
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032137790
51 https://doi.org/10.1007/s10035-014-0486-4
52 schema:sdDatePublished 2019-04-10T17:32
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher N616463ceb0af460f8d720e2c50a8fd6c
55 schema:url http://link.springer.com/10.1007%2Fs10035-014-0486-4
56 sgo:license sg:explorer/license/
57 sgo:sdDataset articles
58 rdf:type schema:ScholarlyArticle
59 N3bbb0b1d72ea4da5bfd8c19b71652275 rdf:first sg:person.0755640733.86
60 rdf:rest N55250b30a37e4db9be948cf6727b773c
61 N4efd548e4a0e480e94a765a77ea021bf rdf:first sg:person.01051347101.48
62 rdf:rest N8691c7fb3ce14f45af525cd7ade26957
63 N55250b30a37e4db9be948cf6727b773c rdf:first sg:person.011600216416.14
64 rdf:rest N4efd548e4a0e480e94a765a77ea021bf
65 N616463ceb0af460f8d720e2c50a8fd6c schema:name Springer Nature - SN SciGraph project
66 rdf:type schema:Organization
67 N7afcacbde74f40dfa22242fc529722dc schema:name readcube_id
68 schema:value 99193657280ffb1db59ad3e1d3a42e00db53d37f6451cf8e5c53e25dea8f2eda
69 rdf:type schema:PropertyValue
70 N7fb389356cce40159b602f6533157182 schema:name CSIRO Computational Informatics, 3169, Clayton South, VIC, Australia
71 rdf:type schema:Organization
72 N8691c7fb3ce14f45af525cd7ade26957 rdf:first sg:person.015716106144.27
73 rdf:rest Na63e2e44ce5f409abf633d133f637570
74 N9d0c6fd0831d460db900ff011a9c6108 schema:issueNumber 4
75 rdf:type schema:PublicationIssue
76 Na076a95b34b44bbc872099103e3a8c9b schema:volumeNumber 16
77 rdf:type schema:PublicationVolume
78 Na63e2e44ce5f409abf633d133f637570 rdf:first sg:person.012510741033.04
79 rdf:rest rdf:nil
80 Na9c8f65b0c3a40038e36fd796de87bb5 schema:name CSIRO Computational Informatics, 3169, Clayton South, VIC, Australia
81 rdf:type schema:Organization
82 Nc91552716acd4a1aa7a4abe7e65b3d27 schema:name dimensions_id
83 schema:value pub.1032137790
84 rdf:type schema:PropertyValue
85 Nce93bb2d6efe4651ae8af435957d229d schema:name doi
86 schema:value 10.1007/s10035-014-0486-4
87 rdf:type schema:PropertyValue
88 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
89 schema:name Mathematical Sciences
90 rdf:type schema:DefinedTerm
91 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
92 schema:name Pure Mathematics
93 rdf:type schema:DefinedTerm
94 sg:journal.1052633 schema:issn 1434-5021
95 1434-7636
96 schema:name Granular Matter
97 rdf:type schema:Periodical
98 sg:person.01051347101.48 schema:affiliation https://www.grid.ac/institutes/grid.6582.9
99 schema:familyName Schmidt
100 schema:givenName Volker
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051347101.48
102 rdf:type schema:Person
103 sg:person.011600216416.14 schema:affiliation https://www.grid.ac/institutes/grid.6582.9
104 schema:familyName Salzer
105 schema:givenName Martin
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011600216416.14
107 rdf:type schema:Person
108 sg:person.012510741033.04 schema:affiliation N7fb389356cce40159b602f6533157182
109 schema:familyName Delaney
110 schema:givenName Gary W.
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012510741033.04
112 rdf:type schema:Person
113 sg:person.015716106144.27 schema:affiliation Na9c8f65b0c3a40038e36fd796de87bb5
114 schema:familyName Cleary
115 schema:givenName Paul W.
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015716106144.27
117 rdf:type schema:Person
118 sg:person.0755640733.86 schema:affiliation https://www.grid.ac/institutes/grid.6582.9
119 schema:familyName Stenzel
120 schema:givenName Ole
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0755640733.86
122 rdf:type schema:Person
123 sg:pub.10.1007/978-3-642-19630-0_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050953132
124 https://doi.org/10.1007/978-3-642-19630-0_9
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/bf01025983 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039523349
127 https://doi.org/10.1007/bf01025983
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/s10853-012-6968-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1002620559
130 https://doi.org/10.1007/s10853-012-6968-z
131 rdf:type schema:CreativeWork
132 sg:pub.10.1038/188910a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028707571
133 https://doi.org/10.1038/188910a0
134 rdf:type schema:CreativeWork
135 sg:pub.10.1038/23819 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048809826
136 https://doi.org/10.1038/23819
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1002/ppsc.200600974 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030860188
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.commatsci.2011.06.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015381476
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.commatsci.2012.02.038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018426840
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.commatsci.2012.08.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008095558
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.powtec.2007.06.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022261021
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/s0892-6875(98)00093-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034669574
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1039/b927490a schema:sameAs https://app.dimensions.ai/details/publication/pub.1007003483
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1063/1.3276799 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031831639
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1063/1.4812063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098550950
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1080/09500830500080763 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012264875
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1103/physrevb.86.184202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060640328
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1103/physreve.67.051301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060730002
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1103/physreve.83.051305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060741822
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1103/physreve.85.041301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043190280
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1103/physrevlett.111.028001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021414331
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1103/revmodphys.68.1259 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839364
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1103/revmodphys.71.435 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839451
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1109/tmi.2006.880670 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061694909
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1111/j.1365-2818.2009.03348.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1021765281
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1126/science.1093010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001113627
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1126/science.1220869 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027075895
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1149/1.3222737 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050470710
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1209/0295-5075/89/34002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064232853
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1504/pcfd.2012.047460 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067506351
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1680/geot.1979.29.1.47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068209785
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1887/0750306483 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099106292
189 rdf:type schema:CreativeWork
190 https://doi.org/10.5566/ias.v31.p27-42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072988832
191 rdf:type schema:CreativeWork
192 https://www.grid.ac/institutes/grid.6582.9 schema:alternateName University of Ulm
193 schema:name Institute of Stochastics, Ulm University, Ulm, Germany
194 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...