An implementation of the soft-sphere discrete element method in a high-performance parallel gravity tree-code View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-03-30

AUTHORS

Stephen R. Schwartz, Derek C. Richardson, Patrick Michel

ABSTRACT

We present our implementation of the soft-sphere discrete element method (SSDEM) in the parallel gravitational N-body code pkdgrav, a well-tested simulation package that has been used to provide many successful results in the field of planetary science. The implementation of SSDEM allows for the modeling of the different contact forces between particles in granular material, such as various kinds of friction, including rolling and twisting friction, and the normal and tangential deformation of colliding particles. Such modeling is particularly important in regimes for which collisions cannot be treated as instantaneous or as occurring at a single point of contact on the particles’ surfaces, as is done in the hard-sphere discrete element method already implemented in the code. We check the validity of our soft-sphere model by reproducing successfully the dynamics of flows in a cylindrical hopper. Other tests will be performed in the future for different dynamical contexts, including the presence of external and self-gravity, as our code also includes interparticle gravitational force computations. This will then allow us to apply our tool with confidence to planetary science studies, such as those aimed at understanding the dynamics of regolith on solid celestial body surfaces, or at designing efficient sampling tools for sample-return space missions. More... »

PAGES

363-380

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10035-012-0346-z

DOI

http://dx.doi.org/10.1007/s10035-012-0346-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1010963589


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0904", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Lagrange Laboratory, University of Nice Sophia Antipolis, CNRS, C\u00f4te d\u2019Azur Observatory, Observatoire de la C\u00f4te d\u2019Azur, B.P. 4229, 06304, Nice Cedex 4, France", 
          "id": "http://www.grid.ac/institutes/grid.462572.0", 
          "name": [
            "Department of Astronomy, University of Maryland, 20742-2421, College Park, MD, USA", 
            "Lagrange Laboratory, University of Nice Sophia Antipolis, CNRS, C\u00f4te d\u2019Azur Observatory, Observatoire de la C\u00f4te d\u2019Azur, B.P. 4229, 06304, Nice Cedex 4, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schwartz", 
        "givenName": "Stephen R.", 
        "id": "sg:person.011005166351.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011005166351.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Astronomy, University of Maryland, 20742-2421, College Park, MD, USA", 
          "id": "http://www.grid.ac/institutes/grid.164295.d", 
          "name": [
            "Department of Astronomy, University of Maryland, 20742-2421, College Park, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Richardson", 
        "givenName": "Derek C.", 
        "id": "sg:person.016250407215.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016250407215.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lagrange Laboratory, University of Nice Sophia Antipolis, CNRS, C\u00f4te d\u2019Azur Observatory, Observatoire de la C\u00f4te d\u2019Azur, B.P. 4229, 06304, Nice Cedex 4, France", 
          "id": "http://www.grid.ac/institutes/grid.462572.0", 
          "name": [
            "Lagrange Laboratory, University of Nice Sophia Antipolis, CNRS, C\u00f4te d\u2019Azur Observatory, Observatoire de la C\u00f4te d\u2019Azur, B.P. 4229, 06304, Nice Cedex 4, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Michel", 
        "givenName": "Patrick", 
        "id": "sg:person.014600122327.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014600122327.15"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02189239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018365392", 
          "https://doi.org/10.1007/bf02189239"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-03-30", 
    "datePublishedReg": "2012-03-30", 
    "description": "We present our implementation of the soft-sphere discrete element method (SSDEM) in the parallel gravitational N-body code pkdgrav, a well-tested simulation package that has been used to provide many successful results in the field of planetary science. The implementation of SSDEM allows for the modeling of the different contact forces between particles in granular material, such as various kinds of friction, including rolling and twisting friction, and the normal and tangential deformation of colliding particles. Such modeling is particularly important in regimes for which collisions cannot be treated as instantaneous or as occurring at a single point of contact on the particles\u2019 surfaces, as is done in the hard-sphere discrete element method already implemented in the code. We check the validity of our soft-sphere model by reproducing successfully the dynamics of flows in a cylindrical hopper. Other tests will be performed in the future for different dynamical contexts, including the presence of external and self-gravity, as our code also includes interparticle gravitational force computations. This will then allow us to apply our tool with confidence to planetary science studies, such as those aimed at understanding the dynamics of regolith on solid celestial body surfaces, or at designing efficient sampling tools for sample-return space missions.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10035-012-0346-z", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1052633", 
        "issn": [
          "1434-5021", 
          "1434-7636"
        ], 
        "name": "Granular Matter", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "14"
      }
    ], 
    "keywords": [
      "soft-sphere discrete element method", 
      "discrete element method", 
      "element method", 
      "different contact forces", 
      "soft-sphere model", 
      "dynamics of flow", 
      "cylindrical hopper", 
      "granular materials", 
      "body code pkdgrav", 
      "contact force", 
      "tangential deformation", 
      "simulation package", 
      "space missions", 
      "friction", 
      "particles", 
      "such modeling", 
      "surface", 
      "force computation", 
      "modeling", 
      "deformation", 
      "hopper", 
      "sampling tool", 
      "different dynamical contexts", 
      "efficient sampling tools", 
      "flow", 
      "body surface", 
      "materials", 
      "single point", 
      "method", 
      "planetary science", 
      "force", 
      "kind of friction", 
      "gravity", 
      "pkdgrav", 
      "package", 
      "successful results", 
      "code", 
      "dynamics", 
      "mission", 
      "contact", 
      "field", 
      "implementation", 
      "dynamical context", 
      "regime", 
      "regolith", 
      "test", 
      "tool", 
      "model", 
      "kind", 
      "computation", 
      "results", 
      "point", 
      "collisions", 
      "validity", 
      "future", 
      "presence", 
      "study", 
      "science", 
      "confidence", 
      "science studies", 
      "context", 
      "code pkdgrav", 
      "implementation of SSDEM", 
      "sphere discrete element method", 
      "interparticle gravitational force computations", 
      "gravitational force computations", 
      "planetary science studies", 
      "dynamics of regolith", 
      "solid celestial body surfaces", 
      "celestial body surfaces", 
      "sample-return space missions", 
      "high-performance parallel gravity", 
      "parallel gravity"
    ], 
    "name": "An implementation of the soft-sphere discrete element method in a high-performance parallel gravity tree-code", 
    "pagination": "363-380", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1010963589"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10035-012-0346-z"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10035-012-0346-z", 
      "https://app.dimensions.ai/details/publication/pub.1010963589"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_583.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10035-012-0346-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10035-012-0346-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10035-012-0346-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10035-012-0346-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10035-012-0346-z'


 

This table displays all metadata directly associated to this object as RDF triples.

153 TRIPLES      22 PREDICATES      99 URIs      90 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10035-012-0346-z schema:about anzsrc-for:09
2 anzsrc-for:0904
3 schema:author Nda080aaa946349db8148da956892c9ea
4 schema:citation sg:pub.10.1007/bf02189239
5 schema:datePublished 2012-03-30
6 schema:datePublishedReg 2012-03-30
7 schema:description We present our implementation of the soft-sphere discrete element method (SSDEM) in the parallel gravitational N-body code pkdgrav, a well-tested simulation package that has been used to provide many successful results in the field of planetary science. The implementation of SSDEM allows for the modeling of the different contact forces between particles in granular material, such as various kinds of friction, including rolling and twisting friction, and the normal and tangential deformation of colliding particles. Such modeling is particularly important in regimes for which collisions cannot be treated as instantaneous or as occurring at a single point of contact on the particles’ surfaces, as is done in the hard-sphere discrete element method already implemented in the code. We check the validity of our soft-sphere model by reproducing successfully the dynamics of flows in a cylindrical hopper. Other tests will be performed in the future for different dynamical contexts, including the presence of external and self-gravity, as our code also includes interparticle gravitational force computations. This will then allow us to apply our tool with confidence to planetary science studies, such as those aimed at understanding the dynamics of regolith on solid celestial body surfaces, or at designing efficient sampling tools for sample-return space missions.
8 schema:genre article
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N50ef23e165fc4a4f8519e3c83ae082df
12 Ne0cb29c05bf44fddb7effcfd4371f0c9
13 sg:journal.1052633
14 schema:keywords body code pkdgrav
15 body surface
16 celestial body surfaces
17 code
18 code pkdgrav
19 collisions
20 computation
21 confidence
22 contact
23 contact force
24 context
25 cylindrical hopper
26 deformation
27 different contact forces
28 different dynamical contexts
29 discrete element method
30 dynamical context
31 dynamics
32 dynamics of flow
33 dynamics of regolith
34 efficient sampling tools
35 element method
36 field
37 flow
38 force
39 force computation
40 friction
41 future
42 granular materials
43 gravitational force computations
44 gravity
45 high-performance parallel gravity
46 hopper
47 implementation
48 implementation of SSDEM
49 interparticle gravitational force computations
50 kind
51 kind of friction
52 materials
53 method
54 mission
55 model
56 modeling
57 package
58 parallel gravity
59 particles
60 pkdgrav
61 planetary science
62 planetary science studies
63 point
64 presence
65 regime
66 regolith
67 results
68 sample-return space missions
69 sampling tool
70 science
71 science studies
72 simulation package
73 single point
74 soft-sphere discrete element method
75 soft-sphere model
76 solid celestial body surfaces
77 space missions
78 sphere discrete element method
79 study
80 successful results
81 such modeling
82 surface
83 tangential deformation
84 test
85 tool
86 validity
87 schema:name An implementation of the soft-sphere discrete element method in a high-performance parallel gravity tree-code
88 schema:pagination 363-380
89 schema:productId N20857df84b574d009edeb32656ff7bad
90 Ndb3540f63413471d8df2f75b7090a00d
91 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010963589
92 https://doi.org/10.1007/s10035-012-0346-z
93 schema:sdDatePublished 2021-12-01T19:27
94 schema:sdLicense https://scigraph.springernature.com/explorer/license/
95 schema:sdPublisher N0cd8e646830b4a9cbc98b42256495b59
96 schema:url https://doi.org/10.1007/s10035-012-0346-z
97 sgo:license sg:explorer/license/
98 sgo:sdDataset articles
99 rdf:type schema:ScholarlyArticle
100 N0cd8e646830b4a9cbc98b42256495b59 schema:name Springer Nature - SN SciGraph project
101 rdf:type schema:Organization
102 N11a09b6363734e1b800c55be04707d17 rdf:first sg:person.014600122327.15
103 rdf:rest rdf:nil
104 N20857df84b574d009edeb32656ff7bad schema:name doi
105 schema:value 10.1007/s10035-012-0346-z
106 rdf:type schema:PropertyValue
107 N50ef23e165fc4a4f8519e3c83ae082df schema:issueNumber 3
108 rdf:type schema:PublicationIssue
109 Nc26984ade2c84a18909ca69f47de7125 rdf:first sg:person.016250407215.00
110 rdf:rest N11a09b6363734e1b800c55be04707d17
111 Nda080aaa946349db8148da956892c9ea rdf:first sg:person.011005166351.35
112 rdf:rest Nc26984ade2c84a18909ca69f47de7125
113 Ndb3540f63413471d8df2f75b7090a00d schema:name dimensions_id
114 schema:value pub.1010963589
115 rdf:type schema:PropertyValue
116 Ne0cb29c05bf44fddb7effcfd4371f0c9 schema:volumeNumber 14
117 rdf:type schema:PublicationVolume
118 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
119 schema:name Engineering
120 rdf:type schema:DefinedTerm
121 anzsrc-for:0904 schema:inDefinedTermSet anzsrc-for:
122 schema:name Chemical Engineering
123 rdf:type schema:DefinedTerm
124 sg:journal.1052633 schema:issn 1434-5021
125 1434-7636
126 schema:name Granular Matter
127 schema:publisher Springer Nature
128 rdf:type schema:Periodical
129 sg:person.011005166351.35 schema:affiliation grid-institutes:grid.462572.0
130 schema:familyName Schwartz
131 schema:givenName Stephen R.
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011005166351.35
133 rdf:type schema:Person
134 sg:person.014600122327.15 schema:affiliation grid-institutes:grid.462572.0
135 schema:familyName Michel
136 schema:givenName Patrick
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014600122327.15
138 rdf:type schema:Person
139 sg:person.016250407215.00 schema:affiliation grid-institutes:grid.164295.d
140 schema:familyName Richardson
141 schema:givenName Derek C.
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016250407215.00
143 rdf:type schema:Person
144 sg:pub.10.1007/bf02189239 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018365392
145 https://doi.org/10.1007/bf02189239
146 rdf:type schema:CreativeWork
147 grid-institutes:grid.164295.d schema:alternateName Department of Astronomy, University of Maryland, 20742-2421, College Park, MD, USA
148 schema:name Department of Astronomy, University of Maryland, 20742-2421, College Park, MD, USA
149 rdf:type schema:Organization
150 grid-institutes:grid.462572.0 schema:alternateName Lagrange Laboratory, University of Nice Sophia Antipolis, CNRS, Côte d’Azur Observatory, Observatoire de la Côte d’Azur, B.P. 4229, 06304, Nice Cedex 4, France
151 schema:name Department of Astronomy, University of Maryland, 20742-2421, College Park, MD, USA
152 Lagrange Laboratory, University of Nice Sophia Antipolis, CNRS, Côte d’Azur Observatory, Observatoire de la Côte d’Azur, B.P. 4229, 06304, Nice Cedex 4, France
153 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...